PLATINIZED PLATINUM ELECTRODES

A. M. FELTHAM AND M. SPIRO

Department of Chemistry, Imperial College of Science and Technology, London S.W.7, England

Received July 29, 1970 (Revised Manuscript Received October 23, 1970)

Contents

I. Introduction 177
II. Historical Origins 177
III. Electrode Kinetics and Mechanism 177
 A. In the Absence of Lead 178
 B. In the Presence of Lead 180
 C. Coulombic Efficiency 180
 D. Substrate Pretreatment 180
IV. Electrodeposition 181
 A. Deposit Appearance 181
 B. Deposit Growth 183
 C. Constitution of Lead-Containing Deposits 184
 D. The Effect of Alternating Current 185
V. Surface Area
 A. Electrochemical Determination 186
 B. Dependence on Plating Conditions 187
 C. Reproducibility 191
 D. Decrease with Time 191
VI. Survey of Recommended Platinizing Procedures 193

I. Introduction

The platinized platinum electrode is the most widely used type of electrode. It makes a regular appearance in conductance cells, forms the basis of the hydrogen reference electrode, and is unsurpassed as an electrocatalyst in fuel cells. Yet the mechanism of the formation of the platinum deposit has been investigated only recently, and information on the properties of the electrode (its appearance, structure, area, and reproducibility), and how these are affected by its method of preparation, is widely scattered and not well known. The main factors are critically assessed in this review.

II. Historical Origins

It is an accident of history that the original recipes for platinum black electrodeposition were devised, not for electrochemical purposes, but in connection with the measurement of radiation. When radiation falls on a black metallic strip the temperature of the strip rises, and the resulting increase in resistance can be determined with a Wheatstone bridge arrangement. Early models of such devices, known as bolometers, made use of platinum strips blackened with soot by means of a petroleum flame. The irreproducibility of this method of blackening led Lummer and Kurlbaum to try instead the electrodeposition of platinum black, since composition of the plating solution, current, voltage, and time can be exactly defined and controlled. But there was one drawback: platinum black electrodeposited from pure chloroplatinic acid solutions did not adhere properly to the electrode. In attempting to overcome this difficulty, Kurlbaum and Lummer recalled that platinum black can easily be precipitated from chloroplatinic acid solution by adding copper or lead, so that such chemically prepared platinum black always contains some copper or lead as well. Accordingly, they tried adding a small amount of copper sulfate, to the extent of about 1% of the chloroplatinic acid present, to the plating solution and found that this regularly produced very good platinum black deposits. Even better results were achieved by adding a small quantity of lead acetate. Their final recipe was 1 part of chloroplatinic acid and 0.008 part of lead acetate to 30 parts of water, the electrolysis being carried out with a potential difference of 4 V between the (platinum) working electrodes which gave a current density of 30 mA cm⁻² at the cathode. It is this recipe which was shortly afterwards adopted by Kohlrausch for making platinum black electrodes for electrochemical purposes. Kohlrausch, to whom this preparation has at times been incorrectly attributed, stated clearly, but without quoting any literature sources, that the method was that of Lummer and Kurlbaum. Only in a later book is the method referred to specifically. That this historic recipe is quite sound is shown by the results of more modern research which is discussed in the following sections. The main modification desirable is a reduction of the lead acetate concentration by a factor of approximately 5.

In the original bolometric study the platinum compound was referred to as "Platinchlorid," but both Kohlrausch and more recent books have pointed out that this term was commonly applied to chloroplatinic acid. This loose nomenclature has caused some confusion in the later literature and in many present-day undergraduate laboratory manuals. Even PtCl₄ may mean chloroplatinic acid unless a special preparation of platonic chloride is given.

III. Electrode Kinetics and Mechanism

The electrodeposition of platinum from chloroplatinic acid solution involves three couples.

\[\text{Pt}^{2+} + 2e^- \rightleftharpoons \text{Pt}^{+} + 2\text{Cl}^- \] (1)
\[\text{Pt}^{+} + 2e^- \rightleftharpoons \text{Pt} + 4\text{Cl}^- \] (2)

The electrode potentials have been measured under a variety of conditions, and the results are summarized in Table I. Those of Goldberg and Hepler are the selected best standard values. In general, the emf's of these couples lack reproducibility. This is not unexpected; reactions 1-3 involve the breaking of several Pt–Cl bonds and must therefore be kinetically slow and possess low exchange current densities.

Reference is occasionally made to the extent to which PtCl₄²⁻ hydrolyzes in solution. The hydrolysis kinetics have been investigated, and the reaction has been found to be catalyzed by a product of the hydrolysis, light, and platinum black. In fact, most plating solutions are acid (usually HCl is added), and the evidence strongly suggests that under these conditions the major species present is PtCl₄²⁻. Only in neutral aqueous solutions of K₃PtCl₆ or PtCl₄ should there be significant concentrations of hydrolyzed species and these, too, are reduced cathodically to platinum.

A. IN THE ABSENCE OF LEAD

The earliest electrochemical studies of the plating of platinum from PtCl₄²⁻ solutions appeared more than one-third of a century after the process itself had been introduced. That PtCl₄²⁻ participated was shown by two main lines of evidence. First, the current-voltage curves, of which an example is given in Figure 1, exhibited no one but several waves, the last steep rise being caused by hydrogen evolution. The quantitative concordance between the curves obtained by early and later workers is relatively poor, partly because the compositions and temperatures of the plating solutions varied and also as a result of the different speeds with which the curves were drawn. The slower the experiment, the greater the area of the platinized platinum deposit, and so the lower the real current density. Grube and Reinhardt’s results are not atypical and encompass a wider range of conditions than most: their initial deposition potentials with 0.1 M H₂PtCl₆ at 18°C were 0.45 V in the absence of HClO₄ and 0.12 V in 5 M HClO₄ and, at 60°C, 0.54 and 0.36 V, respectively. Comparison with Table I shows that the initial electrode process (almost certainly reaction 1) is irreversible and this, as has already been pointed out, is not unexpected. The shift to more anodic deposition potentials as the temperature is raised demonstrates the anticipated increase in exchange current density.

The second reason for pointing to the participation of PtCl₄²⁻ came from the analysis of the electrode products after various times. Initially there was preferential reduction to PtCl₄⁻, as shown also by the fact that the solution color turned from lemon yellow to dark red, to be followed by the deposition of platinum metal. This change with time was particularly pronounced at higher temperatures.

Another third of a century passed before more quantitative information appeared with the advent of sophisticated electrochemical techniques. The most useful of these to date has been thin-layer voltammetry where the peak currents are a few microamperes only and the amount of platinum deposited during the course of each run is managably small. Lau and Hubbard applied slow voltage sweeps to a cell 26 μm thick containing either PtCl₄⁻ or PtCl₄²⁻ solutions, and fitted the resulting current-voltage curves to theoretical rate equations. The derived rate constants k are listed in Table II. In agree-

Table I

<table>
<thead>
<tr>
<th>Couple</th>
<th>Temp, °C</th>
<th>Supporting electrolyte</th>
<th>E°, V</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>None</td>
<td>0.77 ± 0.05</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>None</td>
<td>0.68</td>
<td>13b</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>1 M HCl</td>
<td>0.72b</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>1 M NaClO₄</td>
<td>0.72a</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>2.5 M HCl</td>
<td>0.74</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>None</td>
<td>0.745b</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>None</td>
<td>0.75</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>None</td>
<td>0.73</td>
<td>13b</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>1 M NaClO₄</td>
<td>0.76a</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>None</td>
<td>0.785b</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>None</td>
<td>0.76a</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>None</td>
<td>0.705b</td>
<td>13b</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>1 M NaClO₄</td>
<td>0.74b</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>None</td>
<td>0.765b</td>
<td>20</td>
</tr>
</tbody>
</table>

* All potentials in this review are given on the NHE scale, unless stated otherwise. Values given on the SCE scale have been converted by using E(SCE) = 0.245 V at 25°C. Originally measured vs. a 1 M NaCl calomel electrode (NaCCE). The cell SCE/1 M HClO₄/NaCCE had an emf of 65 mV; hence E(NaCCE) = 0.310 V if the large liquid junction potential is ignored. Measured vs. SCE at 18°C with a KCl salt bridge. Calculated from the corresponding values for couples 2 and 3. Calculated from the corresponding values for couples 1 and 2.

Table II

<table>
<thead>
<tr>
<th>[NaCl]</th>
<th>M⁻¹</th>
<th>a₁₀⁻³</th>
<th>k₁, cm sec⁻¹</th>
<th>a₁₀⁻³</th>
<th>k₂, cm sec⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.29</td>
<td>6.1 × 10⁻⁴</td>
<td>0.38</td>
<td>8.1 × 10⁻⁴</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.37</td>
<td>3.5 × 10⁻⁴</td>
<td>0.32</td>
<td>3.4 × 10⁻⁴</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>0.37</td>
<td>1.5 × 10⁻⁴</td>
<td>0.32</td>
<td>1.6 × 10⁻⁴</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>0.45</td>
<td>5.9 × 10⁻⁴</td>
<td>≤ 2 × 10⁻⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.44</td>
<td>5.7 × 10⁻⁷</td>
<td>< 1 × 10⁻⁴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(21) O. Stelling, ibid., 37, 321 (1931).
Platinized Platinum Electrodes

The addition of chloride has an adverse effect, to such an extent that the reduction of PtCl$_6^{2-}$ to platinum in 1 M chloride solutions takes place at potentials so cathodic that solvent reduction occurs simultaneously. At low chloride concentrations, on the other hand, conversion of PtCl$_6^{2-}$ to PtCl$_4^{2-}$ is rapidly followed by the latter's reduction to the metal, and the electrode process appears to be simply reaction 3. The reaction

\[\text{PtCl}_6^{2-} + \text{Pt} + 2\text{Cl}^- \rightleftharpoons 2\text{PtCl}_4^{2-} \]

should play a negligible role since it takes 500 hr at 60\(^\circ\) C to come to equilibrium.(26)

The following discussion is based on the values of the rate constants as listed in Table II although, as one of the referees pointed out to us, their magnitudes and particularly the trends they display depend strongly on the \(E^0 \) assignments (see footnote a of Table II). As the chloride concentration rises, \(k_1 \) decreases at first and then reaches a steady value, whereas \(k_2 \) decreases more and more rapidly. Their behavior is therefore qualitatively different. The potentials of reduction of PtCl$_6^{2-}$ and PtCl$_4^{2-}$ in low chloride media are similar and the charges of the ions are identical; their shapes, however, are not, PtCl$_6^{2-}$ being octahedral and PtCl$_4^{2-}$ planar. This fact has already been invoked to explain why, at mercury cathodes, the reduction of PtCl$_6^{2-}$ (and of many other large anions) is much more sensitive to the presence of cations than is PtCl$_4^{2-}$. If, as Frumkin has suggested, the transition states of the flat PtCl$_6^{2-}$ ions are located close to the electrode surface, while the PtCl$_4^{2-}$ ions to be discharged are linked to it by cationic bridges, the behavior at mercury electrodes becomes comprehensible. A similar situation may obtain at platinum. A flat PtCl$_6^{2-}$ ion will then require a group of at least five adjoining surface atoms to be free of adsorbed chloride for discharge to be possible, and this becomes increasingly difficult as the chloride concentration rises, hence the sharp fall in the values of \(k_2 \). Another test of the Frumkin hypothesis could be made by measuring \(k_1 \) and \(k_2 \) in the presence of supporting electrolytes containing different cations. Some information on this aspect is already available. According to Table II, when Na$^+$ is almost the sole counter-ion, \(k_1 \) is constant as the chloride ion concentration changes from 0.3 to 1 M, whereas, in the presence of 3 M H$_2$SO$_4$, \(k_1 \) varies inversely with sodium chloride concentration over the range 0.4–1 M. In the original paper(27) the authors deduced from the latter finding that the step determining the rate of the cathodic process involves the complex PtCl$_6^{2-}$, formed by the preceding reversible reaction

\[\text{PtCl}_6^{2-} \rightleftharpoons \text{PtCl}_4^{2-} + \text{Cl}^- \]

However,\(^{28}\) the rate of a reaction such as eq 5 or the equivalent reaction producing Pt(H$_2$O)Cl$_4$ is too small to account for the observed rates of reduction.

Table II records also the values of \(c_{an} \), the product of the cathodic transfer coefficient and the number of faradays involved in the formation of 1 mol of activated complex. Although it did not prove possible to separate these two parameters, the results suggest that both \(n_0 \) and \(n_0^c \) are unity. This implies that transient Pt(III) and Pt(I) species, respectively, are produced in the electrode reaction. Lingane,\(^{28}\) in an earlier chronopotentiometric study of PtCl$_6^{2-}$ reduction kinetics in 1 M HCl on slightly platinized electrodes, found the curve to fit, very roughly, a diffusion-controlled one-electron process. He interpreted this as an initial reduction of Pt(IV) to Pt(III), followed by the latter's disproportionation to Pt(IV) and Pt(II). Although the evidence is as yet far from convincing, it is worth noting that short-lived Pt(III) and Pt(I) species have recently been formed\(^{29}\) in aqueous solution by electron pulse radiolysis.

There is considerable evidence in the literature that the platinizing process is a more complex one than the thin-layer voltammetry results in Table II lead one to suppose. In Lingane's chronopotentiometric experiments,\(^{28}\) no discrete reduction wave for PtCl$_6^{2-}$ in 1 M HCl occurred on "clean" platinum electrodes but only on those covered with a visible coating of platinum black. Lingane concluded that metallic platinum must participate in the reduction process in a much more specific way than merely serving as an inert electron source, and proposed an initial chemical reduction of the oxidant by platinum metal. Another chronopotentiometric finding was an ageing effect. If the slightly platinized electrode was allowed to stand in the deoxygenated 1 M HCl test solution for 2 days (a medium in which the extent of hydrolysis should be slight), a four-electron reduction wave was recorded, corresponding to reaction 3. This is in marked contrast to the thin-layer results which showed the reduction steps Pt(IV) \(\rightarrow \) Pt(II) and Pt(II) \(\rightarrow \) Pt to be well separated in 1 M chloride solutions. Whether the pH difference of 2 between the solutions of Lingane (pH \(\approx \) 0) and those of Lau and Hubbard (pH \(\approx \) 2) is in part responsible for these considerable differences is not known, but it does seem clear that the state of the surface plays a major role in the electrode kinetics.

Two other puzzling observations in the early literature bear this out. Certain curious behavior, such as strong potential fluctuations in one region of the current–voltage curve, was said\(^{29}\) to point to the formation at the electrode surface of a poorly conducting layer which changed as the electrolysis continued. A peak at the beginning of a chronopotentiogram was

also interpreted in this way,21 although it is more likely to have been caused by slow nucleation.29 A second unexpected phenomenon during platinization was the evolution of hydrogen at potentials more positive by up to 0.14 V than that calculated for the reversible hydrogen electrode.20, 21 Lingane28a too observed this and attributed it to simultaneous reduction of PtCl\textsubscript{6}2- and H+; the latter forming hydrogen at a very low partial pressure. One is led to wonder if some electrochemical synergistic effect is involved here. It is interesting to recall that long ago Kohlrausch7 suggested that at high current densities, solutions of PtCl\textsubscript{6} (not H\textsubscript{2}PtCl\textsubscript{6}) produced platinum at the cathode by the formation of hydrogen which subsequently reduced the platinic chloride. Further study in this area should prove interesting.

B. IN THE PRESENCE OF LEAD

In the preceding section we have seen how little is understood of the electrode kinetics of platinum deposition from chloroplatinic acid solutions. Considerably less is known of platinum deposition from lead-containing solutions, an astonishing fact when we bear in mind that the process is now three-quarters of a century old and is in daily use around the world.

Virtually the first attempt at an electrochemical study was23 in 1970, and it produced some unexpected results. First, a solution containing no platinum but 0.01 M in lead acetate and 0.1 M in HCl showed a reduction wave on a platinized platinum electrode beginning at +0.74 V, although the standard potential of the Pb2+/Pb is +0.15 V for platinum and -0.65 V for lead.31b This is almost certainly related to the fact that a lead-containing platinum electrode in a lead ion solution exhibits10 a potential of ca. 0.83 V. This potential does not obey the Nernst equation, and the facts suggest a very low lead activity coefficient in the deposit, indicative either of strong lead-platinum bonding or steric or diffusion-limited imprisonment of lead in the platinum lattice.

The presence of small amounts (10-4-10-8 M) of lead acetate in chloroplatinic acid plating solutions strongly affects33 the cathodic current–voltage curve (cf. Figure 1). The curve alters shape and shifts anodically by 100-200 mV, and the current at a given potential increases. Lead therefore decreases the overpotential, and increases the rate, of the reduction of PtCl\textsubscript{6}2-. This, incidentally, contradicts a theory11a that states that, in cases of codeposition, the rate of reduction is lowered for the metal with the more positive value of the potential of zero charge. \(E_{po} = +0.15\) V for platinum and -0.65 V for lead.31b Current–voltage curves in the presence of lead,3 as in its absence,20 can fluctuate strongly. The current increases with stirring.22

Bernard23 believes, on rather skimpy evidence, that the lead is not deposited concurrently on the platinum but is adsorbed on the electrode. In this way it inhibits the growth of crystals and favors the creation of new crystallites, but it is not clear how the lead comes to be incorporated into the deposit. Electrocrystallization studies coupled with structural probing would prove most enlightening. The other function of the lead could be34 inhibition of the evolution of hydrogen and so an increase in the coulombic efficiency of platinum deposition.

C. COULOMBIC EFFICIENCY

The coulombic efficiency will be unity if reaction 3 alone describes the plating process or if both reactions 1 and 2 are involved with reaction 2 the fast step. The kinetic data of Lau and Hubbard35 suggest that the latter may be true in the absence of any additives. At low chloride concentrations the production and accumulation of PtCl\textsubscript{6} decreases the coulombic efficiency on the anodic side, and the evolution of hydrogen decreases it at the cathodic end. A maximum would therefore be expected in between. The drop at the cathodic end was recently confirmed35 in plating experiments from solutions 0.041 M (2%) in chloroplatinic acid and 1.5 M in sulfuric acid, where the coulombic efficiency was roughly constant at 90-95% for deposition potentials from +250 to +50 mV (RHE: i.e., with respect to the reversible hydrogen electrode in the same solution) and then steadily decreased to 44% at a deposition potential of -50 mV (RHE). In the presence of much chloride, the coulombic efficiency should rise from a very low level as the potential decreases to the point where simultaneous PtCl\textsubscript{6} reduction and hydrogen evolution set in, and may reach a plateau level. A test of these predictions by means of literature data (Table III) is difficult because in the literature it is usually not potentials of deposition but rather current densities that are cited. It is of course true that currents of reduction processes rise as the potential becomes more cathodic, but there is no simple correlation because, at a given current, the potential of deposition depends on the stirring conditions. The second difficulty is our ignorance about the effect of lead on the electrode kinetics, and virtually all workers in the literature have added lead in various amounts, and sometimes HCl, to the plating solution (cf. Table III). For the time being, therefore, the figures in Table III must act as an empirical guide, and it is interesting to notice that the coulombic efficiencies listed pass through a maximum as the current density of plating increases.

D. SUBSTRATE PRETREATMENT

Platinized platinum deposits formed on untreated platinum substrate electrodes are more fragile34 than those formed on annealed or sandblasted surfaces. Electron microscopy showed44 that a smooth platinum surface was roughened to an increasing degree, by thermal etching, sandblasting, and etching with aqua regia. On a roughened surface the initial real current density will be lower than for a smooth one, at constant geometric current density. This is likely to produce more adherent deposits, as is well known in electrofinishing. The other effect of these treatments, particularly etching by heat or with aqua regia, is to remove impurities, such as grease, from the substrate surface.

Some interesting information is provided by a nucleation study36 of mercury on platinum single crystals. Here, platinum...
was anodized to intense oxygen evolution in mercurious nitrate solution and subsequently soaked in 0.09-1.3 \(M \) nitric acid for 5-60 sec. The electrolytic nucleation of mercury from mercurous nitrate solution and subsequently soaked in 0.09-1.3 \(M \) nitric acid for 5-60 sec. The electrolytic nucleation of mercury from mercurous nitrate solution was then observed. The critical overpotential for nucleus formation diminished substantially with increasing time of soaking and nitric acid concentration. The platinization of platinum in acid solution in the absence of dissolved oxygen. However, in the nucleation work \(^{34} \) no mention was made of deaeration.

The pretreatment that proved most effective for deposition of mercury on platinum, namely anodization followed by cathodization, is similar to that conventionally recommended \(^{18} \) for the platinization of platinum. This is, in brief, washing the platinum substrate in either warm concentrated nitric acid or in aqua regia, followed by nitric acid, and subsequent cathodization in very dilute sulfuric acid. There is some foundation for this procedure. Concentrated nitric acid produces an oxide film on the platinum surface, \(^{17a} \) and some workers believe \(^{15} \) that cathodization of a preanodized electrode (i.e., oxide covered) produces an invisible film of platinum black. Lingane \(^{28a} \) has shown (section III.A) that the formation of such a film is essential for rapid reduction of PtCl\(_2\). The electrode kinetics of PtCl\(_2\) reduction on platinum substrates subjected to various electrochemical pretreatments have not yet been studied. It is known that the exchange current densities of a few couples are greater on preanodized platinum surfaces, while those of most couples are higher on precathodized surfaces. \(^{37b, 38, 40} \)

IV. Electrodeposition

No thorough electrocrystallization study has been carried out. In general, the work that has been done has been purely empirical in approach. Rather more attention has been paid to platinization from solutions containing a metal additive, usually lead acetate.

A. DEPOSIT APPEARANCE

Nearly all papers in which platinized platinum electrodes are employed describe their appearance. The presence of additives in the plating solution can have a startling effect and the range of textures obtainable is wide.

1. In the Absence of Lead

Platinization with solutions containing no additive has always given gray deposits. In many cases \(^{6, 10, 41, 42} \) these were not adherent and tended to flake off. Adherent deposits have, however, been prepared from solutions containing no lead acetate by one of the following procedures: platinizing only slightly \(^{3} \) (nonadherency occurred after intense platinization); employing a low current density \(^{10} \) (10 mA cm\(^{-2} \)); or holding the platinum cathode \(^{46} \) at +50 mV, instead of the more usual galvanostatic conditions. It is interesting to note that a common factor in all but one \(^{44} \) of these procedures was the addition of HCl to the platinizing solutions. The first mentioned \(^{4} \) employed 0.025 \(M \) HCl and obtained only moderately good deposits; the other two used 2 \(M \) HCl \(^{44} \) and 1 \(M \) HCl \(^{44} \) and completely satisfactory deposits resulted. This might be due to the kinetic inhibitory effect of chloride. Indeed, chloroplatinic acid solutions 6.0-10.7 \(M \) in HCl smooth ductile platinum deposits can be obtained. \(^{46} \)

A similar inhibitory effect occurs \(^{47} \) with the additive cetyltrimethyl ammonium bromide and leads to highly uniform smooth deposits. Bright platinum deposits can be obtained \(^{48} \) from solutions of chloroplatinous acid. The possibility of obtaining

Table III

Table III

<table>
<thead>
<tr>
<th>Current density, (^{a}) mA cm(^{-2})</th>
<th>[Chloroplatinic acid] (^{b}) %</th>
<th>([\text{Lead acetate}] -) %</th>
<th>([\text{Lead acetate}] -) (M)</th>
<th>Coulombic efficiency, %</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.5</td>
<td>51</td>
<td>0.0-0.2</td>
<td>0.0-5.3</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>3.5</td>
<td>72</td>
<td>0.2</td>
<td>5.3</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>3.5</td>
<td>72</td>
<td>0.005</td>
<td>0.13</td>
<td>2</td>
</tr>
<tr>
<td>120</td>
<td>5</td>
<td>103</td>
<td>0.02</td>
<td>0.53</td>
<td>0</td>
</tr>
<tr>
<td>170</td>
<td>5</td>
<td>103</td>
<td>0.03</td>
<td>0.79</td>
<td>0</td>
</tr>
<tr>
<td>625</td>
<td>1</td>
<td>21</td>
<td>0.00-0.15</td>
<td>0.0-4.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\(^{a} \) These and subsequent current densities are all given per geometric area of the substrate electrode. \(^{b} \) Most workers have given solute concentrations in per cent (w/v). These have been converted to molarities on the basis that chloroplatinic acid is 40 mass \% platinum, \(^{3} \) and that the lead acetate has a stoichiometry of Pb(CH\(_{3}\)CO\(_{2}\))\(_{2}\)-3H\(_{2}\)O (molecular mass 379.35). Subsequent concentrations will be given in both forms for convenience. \(^{c} \) With current reversal every 1.5 min. \(^{d} \) Cited in ref \(^{44} \), although examination of ref \(^{52} \) revealed no mention of coulombic efficiency.

bright deposits from solutions of chloroplatinic acid, or better, alkaline chloroplatinate solutions, was later discredited and attributed to the presence of chloroplatinous acid produced as a result of overheating the platining compound during its preparation. This effect of chloroplatinous acid on chloroplatinic acid plating solutions was later noted again, but just why bright deposits should result under these circumstances when PtCl₆⁻ is an intermediate in platinum black plating is not at all clear, and should be looked into. The commercial systems for bright platinum plating onto noble and base metal substrates have been reviewed.

2. In the Presence of Lead and Other Additives

Adherent deposits, usually black, are best produced by adding lead acetate to the platinizing solution, as Kurlbaum and Lummer discovered long ago. Other additives have been studied, but none has been employed as extensively as lead acetate. Copper and mercury were found to be acceptable substitutes for lead, and gold and thallium gave deposits of good quality. Cadmium, zinc, nickel, and iron have given gray inferior deposits. The effects of a host of metal additives on the appearance and on the X-ray diffraction patterns of platinized platinum deposits have been examined (see later).

The final appearance and texture of a platinized platinum electrode depends on the concentration of lead acetate in the plating solution and the current density of deposition. The minimum concentration of lead acetate required to give a good black deposit from a 0.062 M (3 %) chloroplatinic acid solution 0.5 M in HCl at 13.5 mA cm⁻² was found to be 2.5 x 10⁻⁴ M (0.01 %). A black, velvety texture is usually associated with lead-containing platinum electrodes, although at higher lead acetate concentrations they become gray and smooth (Table IV). Kurlbaum, speculating as to why platinized platinum deposits were black, compared them to an end-on view of a collection of aligned shiny knitting needles. Internal reflection reduces net reflection. Experimental support for this picturesque illustration is apparent in Table IV, where the blackest deposits have the highest roughness factors, i.e., the highest areas.

Comparison of Tables IV and V suggests that the appearance of the platinized platinum deposit also depends on the current density of platinization. Footnote b in Table V confirms this. The powdery deposits obtained at high current densities, and therefore at cathodic potentials, are no doubt attributable in part to pitting by the simultaneous hydrogen evolution (this could perhaps be reduced by strong stirring). However, this conclusion seems odd at variance with the findings in Table IV, where a very low current density was employed and yet, at a lead acetate concentration of 5.3 x 10⁻⁴ M (0.02 %) (the same as in footnote b of Table V), a black and powdery deposit was found. A possible explanation is that the current reversal used in Table IV was harmful and the chlorine evolved caused gas pitting, although it has been found that current reversal has no effect. Potter, on the other hand, claims it is beneficial and decreases the amount of occluded gases. Current reversal is certainly convenient for the platinization of the two electrodes in a conductance cell. An alternative suggestion is that the formation of a black compact deposit at 5.3 x 10⁻⁴ M (0.02 %) lead acetate in Table V but not Table IV is a consequence of the higher lead acetate/chloroplatinic acid ratio in the plating solution. Yet this idea, too, is inadequate, for Table V shows that black compact deposits are produced at low rather than at high lead acetate/chloroplatinic acid ratios, at least at a very high current density.

The information on appearance in Tables IV and V is supplemented by isolated observations. Deposits obtained from a 0.1 M (4.9 %) chloroplatinic acid plus 2 x 10⁻³ M lead acetate solution at 10 mA cm⁻² were smooth and gray (consistent with Table IV), but at 100 mA cm⁻² they were coarser in appearance and characteristic of a dendritic structure. Similar behavior was observed for a 0.072 M (3.5 %) chloroplatinic acid plus 5.2 x 10⁻³ M (0.2 %) lead acetate solution on changing the current density from 10 to 30 mA cm⁻². Yet with 0.072 M chloroplatinic acid, 2 M HCl, and 1.3 x 10⁻⁴ M (0.005 %) lead acetate, 30 mA cm⁻² gave a velvety black deposit. Best results were obtained at the diffusion-limited current. Clearly, further systematic work linking appearance with current density, solution composition, and

<table>
<thead>
<tr>
<th>Table IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data on Platinization for Varying Lead Acetate Concentrations*</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Lead acetate	Appearance of deposit	Coulombic efficiency, %	Pb/Pt atomic ratio	Roughness factor	
0.001	0	Gray, compact	40.6	0.0021	534
0.002	0.8	Black, very powdery	35.9	0.0041	509
0.005	13	Black, powdery	37.2	0.0143	261
0.01	2.6	Black, very powdery	41.6	0.0208	229
0.015	40	Gray, compact	39.8	0.0247	
0.2	53	Gray, compact	38.4	0.0256	

* Using 0.051 M (2.5 %) chloroplatinic acid at 10 mA cm⁻² for 1 hr with current reversal every 1.5 min; from ref 44.

<table>
<thead>
<tr>
<th>Table V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation of Appearance of Platinized Platinum Electrodes with Lead Acetate Concentrations*</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Lead acetate	Appearance of deposit	
0	0	Dark gray, compact
0.002	0.5	Black, compact
0.01	2.6	Black, compact
0.02	5.3	Black, compact
0.05	13	Black, very powdery
0.08	21	Black, very powdery
0.1	26	Black, very powdery
0.15	40	Black, very powdery

* Using 0.021 M (1 %) chloroplatinic acid in 0.1 M HCl at 625 mA cm⁻² for 10 min; from ref 52. |
other variables is required before any systematic relationship can be formulated.

Most appearance studies were carried out at constant current, but at least one report44 refers to potentiostatic work. In this, using a solution 0.05 \textit{M} (2.4\textperthousand) in chloroplatinic acid plus \(2.7 \times 10^{-4} \text{M}\) (0.01\textperthousand) in lead acetate, deposits obtained at potentials more anodic than \(+135 \text{ mV}\) (very low current densities) were gray, while those obtained at still more anodic potentials were not adherent or reproducible. Deposits formed at potentials slightly more cathodic than \(+145 \text{ mV}\) (high current densities) were finely divided and very black.

Appearance is the most obvious and direct way of characterizing the texture of a surface, but Kohlrausch4 also examined the wettability of black platinized platinum electrodes prepared according to Kurlbaum and Lummer's recipe.3 He found that generally they were easily and well wetted with water. However, a large lightly platinized electrode became deactivated when allowed to become dry and was then no longer wetted by water. Optical experiments indicated the presence of an air layer between the platinum particles. The wetting was restored by adding a drop of alcohol to the electrode. In contrast, the smooth gray electrodes prepared from solutions high in lead were found24 to shed water quite readily. The capillary nature of the black deposits is obviously responsible for their enhanced wettability.

\section*{B. DEPOSIT GROWTH}

A most important aspect of platinization that has yet to be properly investigated is the nucleation and growth of the deposit. Electrocrystallization studies have been carried out18 on the deposition of platinum on mercury (where it forms an amalgamated two-dimensional layer which changes to a three-dimensional structure as the Pt(IV) concentration exceeds \(10^{-4} \text{M}\) and on glassy carbon. Here thick platinum deposits grew, the nuclei being essentially hemispherical, but with small protruding dendrites, which points to mass transport control. Growth of platinum on platinum might well follow a similar path to that on a carbon substrate,97 but little direct work has been done.

\subsection*{1. In the Absence of Lead}

Electrocrystallization studies in general have shown25,26 that rates of nucleation are strongly dependent on overpotential. On a surface with a high density of dislocations (\(\sim 10^{15} \text{ cm}^{-2}\)), no nucleation is possible48 unless cathodic overpotentials exceed 150 mV. At overpotentials below this value the growth occurs at the dislocations. Platinization on platinum requires high cathodic overpotentials (section III.A), and indeed nucleation has been favored44,51,58 as the mode of deposit growth. Most experimental work, however, has been done galvanostatically.

Deposits on platinum obtained44 from a 0.041 \textit{M} (2\textperthousand) chloroplatinic acid solution at 100 mA cm\(^{-2}\) were found by replication electron microscopy to form as randomly distributed particles which grew laterally to cover the electrode surface. The same general growth pattern occurred for various substrate topographies (untreated, metallographically polished, sandblasted, and etched by heat, molten sodium carbonate, and aqua regia), but with minor variations. On an untreated platinum substrate the deposit thickness growth rate was not linear and obeyed the equation

\[d = D t^\delta \quad (6) \]

where \(d\) is the thickness at time \(t\), and \(D\) and \(\delta\) are constants whose values were not given.44 Optical microscopy revealed these surfaces to be rough and without any distinguishing features, and cross-sectional microscopy showed that they appeared as solid films with vertical cracks. The latter technique was also applied to similarly prepared deposits at 10 mA cm\(^{-2}\) and the same features emerged. The deposit thickness growth rate on an untreated platinum substrate was \(2 \times 10^{-4} \text{ mm sec}^{-1}\). The lattice constant of platinized platinum11 deposited from 0.041 \textit{M} (2\textperthousand) chloroplatinic acid solution 1.5 \textit{M} in sulfuric acid was 3.915 \pm 0.005 \text{ Å}, independent of the deposition potential from 0 to +230 mV (RHE). The accepted value for platinum metal is 3.924 \text{ Å}.

\subsection*{2. In the Presence of Lead}

It has been shown14 by electron and optical microscopy that more nuclei were formed from solutions containing lead than from those without. In the same work, cross-sectional studies revealed a transition from a closely packed deposit prepared from a solution of 10-4 \textit{M} (0.0038\textperthousand) lead acetate to a dendritic type deposit prepared from a solution of 10-2 \textit{M} (0.38\textperthousand) lead acetate (using 0.1 \textit{M} (4.9\textperthousand) chloroplatinic acid and 100 mA cm\(^{-2}\)). The visual texture changed correspondingly from fine grains to a coarse open structure.

At 100 mA cm\(^{-2}\) a 0.1 \textit{M} (4.9\textperthousand) chloroplatinic acid plus \(2 \times 10^{-4} \text{M} (0.076\textperthousand) lead acetate solution gave44 a constant deposit thickness growth rate of \(2.8 \times 10^{-4} \text{ mm sec}^{-1}\). At 10 mA cm\(^{-3}\) this solution produced rapid initial growth followed by a linear one after approximately 200 sec. In another study,50 a 0.103 \textit{M} (5\textperthousand) chloroplatinic acid plus 5.3 \(\times 10^{-4} \text{ M} (0.02\textperthousand) lead acetate solution at 120 mA cm\(^{-3}\) gave a deposition rate of \(2.8 \text{ mg cm}^{-2} \text{ min}^{-1}\), which is equivalent to \(2 \times 10^{-4} \text{ mm sec}^{-1}\) if the density of platinum is taken as 21.45 g cm\(^{-3}\). This suggests that a small change in plating conditions causes a vast change either in coulombic efficiency or, less likely, in the density of the deposit. A repetition of these growth experiments under potentiostatic conditions should clarify the situation.

\subsection*{3. Occlusion of Reagents}

Kohlrausch4 observed that after platinization several days of washing was required before the conductivity of the rinsing water stabilized. If a thoroughly washed platinized platinum electrode was immersed for a long time in platinizing solution the phenomenon was not repeated, so Kohlrausch suggested that the solute was occluded only during platinization. Similarly, there was an overwhelming tendency48 to occlude acid during platinization and subsequently, if in neutral solution, to emit such acids slowly but continuously. The trouble caused by solute adsorption on platinized platinum used for a hydrogen electrode in unbuffered solutions has been discussed.50

\begin{thebibliography}{99}
\bibitem{57} J. A. Harrison, personal communication, 1970.
\bibitem{58} J. O'M. Bockris and A. Damjanovic, \textit{Mod. Aspects Electrochem.}, 3, 223 (1964).
\end{thebibliography}
C. CONSTITUTION OF LEAD-CONTAINING DEPOSITS

1. Composition

As the concentration of lead acetate in the plating solution increases, so does the amount of lead included in the platinized platinum deposit. The available data are plotted in Figure 2, from the radiotracer work of Hevesy and Somiya and the nondestructive X-ray fluorescence spectroscopy of Thacker. The latter's figures are also incorporated in Table IV. The striking disagreement in the diagram is somewhat difficult to explain. The only apparent difference in preparation was that Thacker used current reversal, whereas Hevesy and Somiya did not. Since the anodization potential (on current reversal) is probably high enough to impede loss of lead in the acid solution, the reason almost certainly does not lie here. A very puzzling feature of Hevesy and Somiya's paper is that they claimed to have measured the lead content of deposits by the \(\alpha \)-particle activity of a thorium B \((110)\text{Pb} \) indicator, but thorium B does not emit \(\alpha \) particles and is a \(\beta \)-particle emitter. The only lead \(\alpha \)-particle emitter is radium D \((210)\text{Pb} \). Values of lead content were estimated by comparison with lead dioxide containing the tracer, and multiplying by, among other quantities, the inverse of the ratio of the \(\alpha \)-particle ranges in the two solids. Thus, change in this ratio can vastly affect the final results. It would therefore seem that Thacker's results are the more trustworthy of the two.

In another investigation it was found that the lead contents of the deposits obtained from a 0.1 \(M \) (4.9\%) chloroplatinic acid plus 2 \(\times 10^{-3} \) \(M \) (0.076\%) lead acetate solution passed through a maximum as the current density increased from 0 to 100 mA cm\(^{-2} \), the total amount of electricity being kept constant by adjusting the time \(t \). Equation 7 expresses the results.

\[
\% \text{ Pb in deposit} = k(t/i)^{\xi}
\]

stated, nor was the method of estimating the lead contents of the deposits.

Recent work throws some doubt on all these results and may explain the discrepancy in Figure 2. When a lead-containing platinum deposit was immersed in 1 \(M \) perchloric acid solutions, much of the surface lead in the deposit dissolved within a few minutes. This lead appeared to be present as an oxide, probably \(\text{PbO} \), and when reduced by hydrogen to lead, it did not dissolve in acid. Since plating solutions are always acidic, some lead will have dissolved if the electrodes were kept in the aerated solution after platinization and before the lead content of the deposit had been measured. It is evident that if reliable estimates of the lead contents of platinized deposits are to be obtained, they must not be allowed to come into contact with acid in the presence of oxygen before the analysis.

Indications as to the physicochemical state of the lead in platinized platinum deposits come from several directions. From X-ray diffraction work it has been deduced both that the lead is in solid solution and that it is not in solid solution. The equilibrium platinum-lead phase diagram suggests that all the lead is present as \(\text{Pt}_2\text{Pb} \) dispersed in a matrix of Pt; while the emf vs. composition curves of cast alloys indicate a compound of stoichiometry \(\text{PbPt} \) in Pt, and this has been verified by microscopy. However, it is essential to point out that the phase state of alloys produced by electrolysis often does not correspond to that of the equilibrium phase diagram.

Hevesy and Somiya examined the retention of lead by electrodes at high temperatures using the both the \(\alpha \?) \) particle- and \(\gamma \)-ray activity of the thorium B tracer. According to the \(\alpha \)-particle activity the lead started to sublime out of the deposit at about 600\°C and 85\% of it had been removed after 16 hr at 720\°C. However, the \(\gamma \)-ray activity indicated that only 42\% of the lead had been lost after 16 hr at 690\°C. Since \(\gamma \)-rays are more penetrating than \(\alpha \) particles it was concluded that the lead vaporized only from a surface region, as deep as the range of the \(\alpha \) particles in the deposit. This would be expected, as the rate of sublimation of lead from the bulk of the deposit would be limited by the slow rate of diffusion. A similar situation applies to the leaching of lead from platinized platinum electrodes by 1 \(M \) perchloric acid, as already mentioned. Only the lead in the first two or three atomic layers could be dissolved and then only when present as an oxide.

2. Structure

It was noted in the previous section that platinized platinum deposits containing lead have been examined with X-rays. Debye–Schererrer diffraction patterns were obtained, indicating the deposits to be crystalline, for deposits formed from solutions of up to \(2.9 \times 10^{-3} \) \(M \) (0.11\%) and \(5.3 \times 10^{-3} \) \(M \) (0.2\%) lead acetate, with 0.062 \(M \) (3\%) and 0.051 \(M \) (2.5\%) chloroplatinic acid, respectively, at 10 mA cm\(^{-2} \). Lead acetate concentrations below \(2.1 \times 10^{-4} \) \(M \) (0.08\%), with 0.021 \(M \) (1\%) chloroplatinic acid at 625 mA cm\(^{-2} \), also gave deposits which exhibited Debye–Schererrer patterns, but when, at this high current density, higher lead acetate concentrations of \(2.1 \times 10^{-1} \) \(M \) (0.08\%) to \(4.0 \times 10^{-1} \) \(M \) (0.15\%) were used, no diffraction lines were observed. This was attributed to the deposit being in a state of colloidal dispersion. In these diffraction patterns an appreciable line broadening, which tended to increase with lead content, suggested that the crystallite sizes were smaller in the higher lead-containing deposits. One would suppose, therefore, that the latter

possessed larger specific areas, yet the reverse is true for the higher lead contents (see Figure 7). The situation is obviously more complicated than appears at first sight, and indeed, electron microscopy indicated that there is not a continuous distribution of crystallite size about a mean value but rather two cubic types of crystallite, each with a distribution of size about its own mean value. The latent constant of the lead-containing deposits was greater than that of pure platinum, but whether it increases with an increase in the lead content is in dispute.

Other metal additives that produced a widening of the platinum crystal lattice in the electrodeposits were Hg, Cd, and Ti, while Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pd caused a contraction, and Sb, Sn, Bi, As, and Au, although they modified the nature of the deposit, did not alter the platinum lattice dimensions. No correlation can be seen between the effect of these metals on the lattice dimensions and the appearances of the deposits discussed earlier, brought about by their inclusion in the plating solution.

D. THE EFFECT OF ALTERNATING CURRENT

Platinum black surfaces can be produced on smooth shiny platinum in an inert aqueous solution by several minutes of ac polarization. The conditions used have been .5 M sulfuric acid at 60 Hz and with an amplitude sufficient to reduce and oxidize the surface without substantial gas evolution; after such polarization platinum has also been found in solution. Others have used either 1 M perchloric acid or 3 M nitric acid with a 30-Hz square wave of 500 mV amplitude centered on 950 mV. Here the reflectance of the electrode began to decrease before visible darkening, and the time of blackening shortened with increasing frequency. Strangely, it was only in alkaline solution that darkening of the electrode was first noted on the application of a square-wave pulse. Moreover, under certain conditions, with the application of ac a roughened electrode can be smoothed.

There is controversy over the mechanism of this darkening. On the one hand, it has been attributed to the repeated penetration and removal of hydrogen caused by the cathodic parts of the pulses, with the resultant expansion and contraction of the platinum lattice breaking up the metal surface. Other workers have focused attention on the anodic parts of the pulses, with the resultant expansion and contraction of the platinum lattice breaking up the metal surface. A relevant observation is that the electrolytic formation and reduction of thick bulk oxide layers, repeated several times, increased the roughness factor of a platinum electrode by 100 times or more. Perhaps both mechanisms are admissible under appropriate conditions.

V. Surface Area

The prime aim of platinization is to obtain a large area. The concept of true area on a microscopic scale is somewhat arbitrary, and especially so with electrochemical systems. Thus it has been argued that the area determined in the dry state, e.g., by the BET method, may be much greater than that associated with electrochemical processes, because the inside surfaces of many pores and cavities of a highly porous surface are not effective in, or contribute but slightly to, the transfer of charge in an electrochemical process. Since all investigations of the areas of platinized platinum electrodes have used electrochemical methods of estimation, the principles of these methods will be outlined first. As will be seen, the correlation between gas adsorption and electrochemical methods of area determination is reasonable for platinized platinum electrodes.

The results of area measurements have unfortunately been presented in the literature in a wide variety of ways, and we must begin by defining the many terms used. The simplest measure is the surface area itself, S. The area lacks significance on its own and is never used in this review. For electrodes, the most useful quantity is roughness factor, φ. It is dimensionless and defined by

\[
\phi = S/A
\]

where A is the geometric area of the substrate electrode. The specific area is also used, although this is generally more useful for powders than electrodes. Two types of specific area have been employed and are described by different names in this review to avoid ambiguity. First, the mass specific area, \(\sigma_m \), is given by

\[
\sigma_m = S/m
\]

where m is the mass of the deposit. Note that this does not include the mass of the underlying substrate. Second, coulombic specific area, \(\sigma_c \), is defined by

\[
\sigma_c = S/q
\]

where q is the amount of electricity passed in deposition. It is necessary to use \(\sigma_c \) because some investigators have characterized the amount of deposit only by recording the number of coulombs passed during platinization, and 100% coulombic efficiency cannot be assumed. For the deposition of platinum with complete coulombic efficiency, a mass specific area of 1978 cm² g⁻¹ is equivalent to a coulombic specific area of 1 cm² C⁻¹. Division of the roughness factor by the amount of deposit, or of specific area by geometric area, gives the corresponding specific roughness factor, in reciprocal grams or reciprocal coulombs. There is no advantage in using this quantity, and it will not be employed here.

Another useful quantity is the degree of platinization of electrodes. Like specific area, it is quoted in two forms. The mass degree of platinization, \(\omega_m \), is defined as

\[
\omega_m = m/A
\]

and the coulombic degree of platinization, \(\omega_c \), is defined by

\[
\omega_c = q/A
\]

For 100% coulombic efficiency, a mass degree of platinization of 1 g cm⁻² is equivalent to a coulombic degree of platinization of 1978 C cm⁻¹. It follows from the above that

\[
\phi = S/A = \sigma_m \omega_m = \sigma_c \omega_c
\]
A. ELECTROCHEMICAL DETERMINATION

There are three basic electrochemical methods for estimating the surface area of platinum electrodes: the determination of the amount of electricity equivalent to the formation of a monolayer of hydrogen and of that equivalent to a monolayer of oxygen, and the measurement of the double-layer differential capacitance. Each of these three methods refers to a fairly well-defined region of the charging (potential-charge) curve of platinum in some inert electrolyte solution (usually sulfuric or perchloric acid), as shown in Figure 3. The solution is saturated with an inert gas, such as N₂ or He, so that the system is not complicated by the ionization of adsorbed hydrogen or the reduction of adsorbed oxygen. Anodization from the potential of hydrogen evolution gives a slow increase in potential as adsorbed hydrogen is ionized to approximately 0.35 V (RHE). Then a sharp rise occurs while most of the charge passed goes into charging the double layer, to approximately 0.8 V (RHE). Finally, there is a slow linear increase, during which a layer of adsorbed oxygen is formed, to oxygen evolution at about 1.6 V (RHE). Subsequent cathodization removes the adsorbed oxygen; as this process involves a high activation energy the potential drops sharply to an almost horizontal region at about 0.7 V (RHE). The potential then decreases further to the hydrogen evolution region. The flatter regions up to gas evolution are known as arrests.

If on anodizing the potential is not allowed to exceed about 0.8 V (RHE), the subsequent cathodic charging curve is identical with the anodic one and there is no hysteresis. This fact is made use of in area determinations using the hydrogen evolution arrest. The electricity equivalent to a monolayer of hydrogen is found from the length of the hydrogen arrest provided the solution was free from oxygen and "negative metal impurities", these were the same. They also recommended that the current density should be high enough to make leakage currents negligible. However, on the whole two different schools of measurement have evolved and will be dealt with separately.

Anodic measurement of the hydrogen arrest was developed in Russia and has been thoroughly investigated for platinized platinum and platinum black. The measurements are carried out galvanostatically and are best at moderate current densities (ca. 0.1 mA cm⁻²) where little or no hysteresis is found and the system is virtually in equilibrium all the time. Comparison of the areas of various electrodes obtained by the krypton BET method with the lengths of the anodically determined hydrogen arrests has shown that the latter require 280 μC cm⁻² for platinized platinum in 0.5 M sulfuric acid and for platinum blacks in 0.05 M sulfuric acid, and 218 μC cm⁻² for platinized platinum in 1 M HCl and in 1 M KBr plus 0.03 M HCl and for platinum blacks in 0.5 M sulfuric acid.

The accuracy of these measurements was reckoned to be ±16%. Nevertheless, it has been argued that the anodic measurement of the hydrogen arrest is unsatisfactory as a routine determination because allowance has to be made for the molecular hydrogen generated at the reversible hydrogen potential, as was found for a Teflon-bonded platinum black electrode. The results in fact depended on the starting potential. It must be noted that in most of the Russian charging curve work the potential did not go below approximately 10 mV (RHE), so no molecular hydrogen would have been formed. However, in none of the experimental area calibrations was the lower limit of potential stated.

The cathodic measurement of the hydrogen arrest was developed chiefly in the United States but has not been experimentally tested like the anodic measurement. Galvanostatic charging at high current densities (ca. 100 mA cm⁻²), where the areas were independent of the current, and cyclic voltammetry have been used. In the latter the areas of the appropriate current-voltage (time) regions are evaluated. Assuming that at the reversible hydrogen potential there was one atom of hydrogen per surface platinum atom it was calculated that 210 μC cm⁻² was required. With 1 M perchloric acid or 0.5 M sulfuric acid as electrolyte, this figure has been used for smooth and platinized platinum.

The analogous use of the oxygen arrests is not so straightforward as for the hydrogen ones since a condition of full coverage by oxygen is difficult to define. This is because surface oxides of differing thickness and/or formal valencies are produced (a full discussion on the nature of these surface oxides is given in ref 7A and 82, but contention still exists).
The correction for double-layer charging in the oxygen anodic arrest can be carried out by extrapolating the steep double-layer line to the potential just before oxygen evolution commences. For the cathodic arrest this correction must be calculated from capacitance data but is very small because the potential range covered is short. Measurement under galvanostatic conditions was satisfactory, although in one case77 roughening of the electrode resulted (see section IV.D). A fairly high current density was always necessary;77 otherwise the lengths of the cathodic and anodic arrests differed. During the anodization there is a danger of oxygen dissolving in the platinum, but the effect of this can be circumvented37a by making fast cathodic measurements only. To reduce this danger even further, some workers have not cathodized from oxygen evolution but from 1.24 V,86 1.10 V (RHE), and 1.05 V (RHE);39 in the first case the electrolyte was 1 M sulfuric acid at 25°C, so the potential corresponds to ca. 1.10 V (RHE), and for the other two cases the electrolyte was 85% orthophosphoric acid at 150°C. It was found38 that for cathodization from 1.24 V in 1 M sulfuric acid to be consistent with krypton BET measurements, 272 μC cm−2 was required for platinized platinum, as opposed to 347 μC cm−2 by comparison with smooth platinum, and 355 μC cm−2 for Teflon-bonded platinum black electrodes. A very similar figure of 357 μC cm−2 was obtained39 for Teflon-bonded platinum black electrodes in 85% orthophosphoric acid at 150°C when cathodization was started at 1.05 V (RHE). Some workers have used values calculated from the packing density of platinum by assuming that a complete monolayer of oxygen is formed with a 1:1 O:Pt stoichiometry, giving38 420 μC cm−2 and14 513 μC cm−2, according to the packing densities used. The charge equivalent to oxygen coverage has also been determined by cyclic voltammetry.44,82

Finally, the double-layer differential capacitance as a measure of surface area has been investigated in some detail. The classical ac micro-electrode technique is not suitable for determining the capacitances of platinized platinum electrodes because their areas, and thus their capacitances, are too large. In essence, the method has been to take the slope of the charging curve in the (linear) double layer region. The differential capacitance, C, is then given by

$$C = \int_{0}^{\Delta t} \frac{Idt}{\Delta E}$$

where I is the current which causes a change in potential of ΔE in a time Δt. Usually galvanostatic conditions14,74 have been employed so the slope could be measured directly and eq 15 used. Ershler73 recommended that moderate current densities be used; otherwise the system is not in equilibrium. If the potential is changed too quickly some of the current is still used for the hydrogen arrest (in the case of anodic charging) or the oxygen arrest (cathodic charging). In a later modification88,88 applied to platinized platinum, the starting potential was fixed by auxiliary dc polarization and a square-wave signal of low amplitude (≤ 20 mV) and frequency (2 Hz) was applied. The change in potential of the through the test electrode was recorded on a cathode ray oscilloscope. In more recent work,89 short constant-current pulses of less than 10-μsec duration are employed so as to eliminate any faradaic contribution.

While the differential capacitance method is good14,16,18,89 for smooth platinum, it is not usually satisfactory46,96,76 for finely divided platinized platinum (although it has been successful on some occasions14,89) or for Teflon-bonded platinum black fuel cell electrodes78 and platinum black.65,78 Its usefulness appears to be limited44 by the texture of the electrode, and deposits of high roughness factor and specific area may give anomalous results because66 the values of the capacitance in narrow pores are too high compared with those of a smooth surface. For platinized platinum the best figures, from comparison with the krypton BET method, are: 36 ± 5 μF cm−2 in 0.5 M sulfuric acid,73 20 ± 3 μF cm−2 in 1 M HCl or 1 M KBr plus 0.03 M HCl,73 and 20.1 ± 0.7 μF cm−2 in 1 M sodium sulfate solution.84 The experimental conditions pertaining to the last figure were dubious. Measurements were taken using a square wave of frequency 2 Hz and of amplitude 20 mV centered on 445 mV or about 0.86 V (RHE). Since this is a little above the upper limit of the double-layer region, oxygen adsorption would affect the value of the capacitance measured. Values of about 20 μF cm−2 have been criticized89 for smooth platinum as being too low, and attributed to contamination.

B. DEPENDENCE ON PLATING CONDITIONS

The roughness factors reported in the literature vary over an enormous range. Extreme values as high as 3900 or even 20,000 were said88 to be obtained by a “standard” platinization procedure. However, usual values13,14,16,88 are 200–500, although roughness factors in excess of 2000 have been claimed,45,46 in one instance45 with the proviso that this was true only with large deposits (approximately 1 g of deposit per square centimeter of electrode). The actual value obtained depends on the amount of deposit, the composition of the plating solution, the current density of deposition, and the temperature. The first three have been investigated at ambient temperatures only, but temperature itself seems to have been somewhat neglected. Moreover, experiments designed to test the effect of the composition of the plating solution have all in fact just examined the effect of the lead acetate concentration.

1. Degree of Platinization

The areas of platinized platinum electrodes increases13,14,88 with degree of platinization, although the rate of this increase usually drops13,14,42 as the platinization continues, or even attains4 a maximum value. The available data are plotted in Figures 4, 5, and 6.

The roughness factors of Figure 6 are almost ten times greater than those in Figure 4 and these, in turn, are some ten times greater than the ones in Figure 5. The values in the last case might be expected to be well below the true values, partly because39 of a faradaic contribution to the measured capacitance and partly because of the very small current density (0.7 mA cm−2) of platinization. This would normally lead to a low coulombic efficiency and the accumulation of PtCl4− in the plating solution, except that here the chloroplatinic acid concentration was correspondingly small. It is therefore a moot point whether the coulombic degree of platinization here is a fair guide to the mass degree of platinization. The exceed-

(88) R. J. Brodn and N. Hackerman, ibid., 104, 704 (1957).
The geometric area was 34 cm². The platinum substrate. For platinization from a 0.1 mol dm⁻³ lead acetate solution at 100 mA cm⁻² the area increased linearly with time [91]. The geometric area was 34 cm².

Not only the magnitudes but also the shapes of the plots in the three diagrams differ markedly. The maximum in the roughness factor curve in Figure 5 is not encountered elsewhere, and the complete linearity shown in Figure 6 might be a consequence of the potentiostatic, as opposed to galvanostatic, plating conditions. A more likely explanation is proposed below. In a more recent and quantitative study, the electrode area was measured by anodization in the hydrogen region, eq 16 was found to relate roughness factor to deposition

$$\phi = bt(1 - e^{-\beta t})$$ \hspace{1cm} (16)$$

where \(t \) is 100 mA cm⁻² for the first 400 sec of plating from a 0.041 M (2%) chloroplatinic acid solution. The values of \(b \) and \(\beta \) varied from about 0.3 to 1.3 sec⁻¹ and from about 0.0006 to 0.003 sec⁻¹, respectively, depending on the pretreatment of the platinum substrate. For platinization from a 0.1 M (4.8%) chloroplatinic acid plus 2 × 10⁻² M (0.076%) lead acetate solution at 100 mA cm⁻² the area increased linearly with time (as in Figure 6) or with mass of deposit. From the figures given we calculate that after \(t \) sec

$$\phi = (3.8 \times 10^{-3})t$$ \hspace{1cm} (17)$$

by dividing the rate of area increase, found by the hydrogen arrest method, by 280 μC cm⁻². The pretreatment of the substrate had no effect in this case.

At 10 mA cm⁻², with the same lead-containing solution, the relationship between area and time or mass of deposit was no longer linear. The deposition rate varied with electrode pretreatment, and the rate of increase in surface area decreased with deposition time, as in Figures 4 and 5. The experimental data followed the equation

$$\sigma_m = g(i/t)^\gamma$$ \hspace{1cm} (18)$$

where \(i \) is the current density of 10 mA cm⁻², and \(g \) varies from about 650 to 850 and \(\gamma \) from about 0.3 to 0.4, depending on the nature of the substrate surface. Equations 17 and 18 taken together suggest that at high current densities specific area is approximately constant with time of plating (or degree of platinization), whereas at low current densities specific area decreases with time of plating. This is confirmed by Figures 4–6, for the potentials of deposition of Figure 6 are of a magnitude to give current densities higher than those of Figures 4 and 5.

As expected, this general rise in area with degree of platinization (with the exception of Figure 5) is reflected in a continued enhancement of electrode activity as more platinum is deposited. An example is found in the electrooxidation of methanol.

2. Lead Acetate Concentration

The concentration of lead acetate used in the plating solution affects the roughness factor of the final deposit. The mass specific areas of deposits prepared at 100 mA cm$^{-2}$ from 0.1 M (4.9%) chloroplatinic acid solutions decreased as the lead acetate concentration was raised from 10^{-4} M (0.0038%) to 0.05 M (1.9%). The magnitude and type of decrease were not specified. On the other hand, Thacker, who had used only 10 mA cm$^{-2}$, found that the area, measured by the oxygen arrest technique, was a maximum at a Pb/Pt atomic ratio of 0.0021, which corresponds to a lead acetate concentration of 8×10^{-4} M (0.003%). This is shown in Table IV and Figure 7. Rather more indirect evidence on the area-lead content relationship is provided by the measurements of Hevesy and Somiya. From their cathodic polarization data we have estimated a measure of the surface area as described under Figure 8. The diagram displays an area maximum at a Pb/Pt atomic ratio of approximately 0.005-0.01 which corresponds to a lead acetate concentration of ca. 2.5×10^{-4} M (0.01?), but there is no minimum at higher lead acetate concentrations as there is in Figure 7. This work and Thacker's taken together indicate that the area would be maximized by employing a lead acetate concentration of about 1.3×10^{-4} M (0.005%).

These two pieces of work are augmented by a study on the variation of electrode activity, to methanol oxidation in 2 M MeOH + 3 M H$_2$SO$_4$ solution at 25°C, with the lead acetate concentration of the plating solution. For a 0.103 M (5%) plating solution of chloroplatinic acid and deposition at a constant potential of 250 mV (RHE), maximum activity of the electrode occurred for a lead acetate concentration of 5.5×10^{-4} M (0.02%); however, at deposition potentials of $±50$ or -50 mV, monotonic increases in electrode activity with lead acetate concentration were found up to 4×10^{-4} M (0.15%). Unfortunately this work is not strictly comparable with that discussed above, partly because of the potentiostatic conditions of preparation. The potentials employed probably correspond to current densities rather larger than the 10 mA cm$^{-2}$ used by Thacker and by Hevesy and Somiya.

It should be added that both the area and the activity measurements were carried out in acid solution. Introduction of oxygen at any stage would have resulted in some leaching of the lead from the surface layer and a possible concomitant change in area.

3. Current Density

When the solution composition as well as the mass of deposit are kept constant, the area can clearly be seen to depend upon the current density employed (Figure 9). The type of information conveyed in Figure 10, though superficially similar, differs because in the paper in question the masses of deposit ranged from 1 to 23 g, and the specific area varies with the mass of deposit (cf. Figures 4 and 5). A third piece of information can be deduced from a set of current-voltage curves for platinized platinum electrodes carried out in 1 M HCl under 1 atm of hydrogen. The composition of the plating solution was not stated. According to the legend of Figure 8, the initial slopes of current vs. voltage should be approximately proportional to area. Estimation of the slopes is made difficult by the small size of the graph on which the results are plotted, but the diagram does show that the area tended to increase with current density of platinization up to a value of 45 mA cm$^{-2}$. There is no evidence of any maximum.

Roth and Lasko, who used a solution 0.1 M (4.9%) in chloroplatinic acid plus 2×10^{-4} M (0.076%) in lead acetate, presented their area results in two forms. For a constant quantity of electricity during platinization, $ϕ$ was plotted against i. The form of this plot was essentially the same for all platinum substrates in spite of various pretreatments.
Figure 8. Variation of the "area" of a platinized platinum deposit with lead content and with the lead acetate concentration of the plating solution. Obtained from a 0.062 M (3%) chloroplatinic acid solution 0.2 M in HCl. The current density was stated to be 10 cm⁻¹, probably a misprint for 10 mA cm⁻² (from ref 10). A measure of the area has been derived from cathodic overpotential measurements in 0.5 M sulfuric acid at a constant current density of 20 mA/cm² of geometric area. Current (I) vs. overpotential (η) curves are functions of the exchange current density (i₀) or the exchange current (i₀ = i₀S). At constant current, η increases as i₀ decreases, and (if i₀ is constant) the smaller i₀, the smaller is the area S. In the special case when overpotentials are <200 mA cm⁻² of geometric area, have been deduced from the data in ref 10.

Figure 9. Dependence of the mass specific area σₘ of a platinized platinum deposit on the current density of platinization, i; obtained from a 0.041 M (2%) chloroplatinic acid solution, giving a constant mass of deposit of 0.71 g (from ref 11).

where \(\eta = \text{constant} \), and from their logarithmic plot of \(\sigma_m/t \) against \(i/t \), \(e \) is close to 0.5. It follows that \(\sigma_m \) is almost independent of current density.

These four area-current density determinations seem united only by their diversity. In one case the mass specific area decreases monotonically as \(i \) increases, in another it decreases monotonically, in a third it passes through a maximum at 250 mA cm⁻², and in yet another it is altogether independent of current density. Of the two studies of roughness factor, one shows \(φ \) increasing continuously with \(i \) and the other records a maximum in \(φ \) at 20 mA cm⁻². One's scientific morale is sustained only by the thought that these differences may have arisen as a result of the diversity of plating conditions, and by the hope that further, carefully planned, studies may disentangle the variables. It is strongly recommended that, in the future, workers always describe their surfaces in terms of roughness factors as well as specific areas.

Some complementary evidence is available from plating experiments carried out under potentiostatic conditions. The dependence of roughness factor on the (constant) potentials of platinization, shown in Figure 6, points to a maximum roughness factor at a potential of approximately 230 mV. This is illustrated more clearly in Figure 11, in which the slopes of the lines in Figure 6 (i.e., the coulombic specific area) have been plotted against the potentials of platinization. Since lower (more cathodic) plating potentials correspond to higher current densities, it follows from Figure 11 that the roughness factor should pass through a maximum with increasing current density. The decrease in coulombic specific area shown at deposition potentials more anodic than 230 mV may be explained as being due to a decrease in coulombic efficiency as PtCl₆⁻ is produced and accumulates. The researches below confirm that, at potentials up to +230 mV, higher areas are obtained at more positive potentials.

In one such study, in which deposits were prepared from 0.041 M (2%) chloroplatinic acid solution 1.5 M in sulfuric acid, the mass specific area (measured by the hydrogen arrest technique) rose from 40-70 cm² mg⁻¹ when deposited between -50 and +50 mV (RHE) to 170-200 cm² mg⁻¹ when deposited at potentials above +150 mV (RHE). The activities of these electrodes to the electrooxidation of methanol increased by factors of 8-10 when the deposition potential was changed from -50 to +250 mV (RHE), and most of this change occurred for potentials between -50 and +50 mV (RHE). However, the mass degree of platinization ranged from 5 to 15 mg cm⁻², and this detracts from the usefulness of the above observations. A similar trend was found for electrodes prepared from a 0.103 M (5%) chloroplatinic acid plus 5.3 \(\times 10^{-4} \) M (0.02%) lead acetate solution, but here most of the change in activity occurred between +50 and +250 mV. In a fourth paper, the electrodeposition from a 0.051 M (2.5%) chloroplatinic acid solution 1 M in HCl was studied at the controlled potentials 0, 50, and 150 mV; both the areas determined by the hydrogen arrest technique and by differential capacitance at 0.6 V showed a very large increase for a given mass of deposit when the deposition potential was changed from 0 to 50 mV, and this was confirmed visually from electron micrographs. X-Ray diffraction line broadening indicated particle diameters of 24 and 15 nm, respectively, for these two de-
position potentials, and it was concluded that at the lower potential a high coverage of hydrogen on the platinum surface inhibited the nucleation process, with a consequent increase in particle size and a smaller surface area. Furthermore, in deposition from 0.041 M (2%) chloroplatinic acid solution 1.5M in sulfuric acid, the platinized platinum crystallite diameters were found by X-rays to be ca. 30 nm at a deposition potential of 0 mV (RHE) (ca. -20 mV (NHE)) and ca. 20 nm at +250 mV (RHE). The platinum lattice constant did not change with deposition potential.

It is easier to explain the phenomena observed during electrodeposition if constant potential rather than constant current is employed, but, however the plating is carried out, whether potentiostatically or galvanostatically, both potentials and current densities should be reported. Although the value of the uncontrolled variable will change somewhat during the course of plating, an average value, with the range of variation if it is significantly large, would provide valuable information for subsequent workers.

4. TEMPERATURE

The effect of the temperature of deposition on the area of platinized platinum electrodes has received but little attention. Electrodes prepared from a 0.041 M (2%) chloroplatinic acid solution 1.5M in sulfuric acid at -20, +4, and +80°C displayed the same type of dependence of activity (to the electrooxidation of methanol) on deposition potential as did that prepared at +20°C. Deposits obtained at 200-250 mV (RHE) (180-230 mV) in the temperature range -20 to +80°C had similar values of mass specific area and practically the same activity despite a 30-fold variation in deposition currents. Since mass specific area depends on current density as well as on degree of platinization, these two factors appear to have compensated one another.

C. REPRODUCIBILITY

In the literature there are widely differing reports about the reproducibility of platinized platinum electrodes. The data in Figure 12, for example, show a reproducibility of 5-10%. Electrodes prepared from 0.103 M (5%) chloroplatinic acid plus 5.3 × 10^{-4} M (0.02%) lead acetate solution at 120 mA cm^{-2} gave activities for the Ti^{II}-Ti^{III} electron exchange catalysis which were reproducible to 5%. Even better consistency was obtained in work on the anodic polargraphy of dextrose; rotating disk electrodes prepared from 0.062 M (3%) chloroplatinic acid plus 1.6 × 10^{-3} M (0.06%) lead acetate at 152 mA cm^{-2} and 1300 rpm gave polarographic currents reproducible to 2%. In contradistinction, Joncich and Hackerman found that platinization was only "reproducible" when no lead acetate was added. Using a solution of 0.049 M (2.4%) in chloroplatinic acid and 2.5 × 10^{-4} M (0.001%) in lead acetate, and 210 mA cm^{-2}, they obtained samples of specific areas 8.9 and 15 cm^{2} mg^{-1} after 30 min of plating and samples of specific areas 2.9 and 6.8 cm^{2} mg^{-1} after 120 min. A solution of 0.09 M (4.4%) chloroplatinic acid containing no lead acetate, with a current density of 150 mA cm^{-2}, gave samples of specific areas 1.5 and 2.0 cm^{2} mg^{-1} (or with roughness factors of 350 and 620, respectively); the time of plating was not given. Thus, even these "reproducible" results are not very promising, although the reproducibility of two points in Figure 10 is good to 5%.

D. DECREASE WITH TIME

It is highly desirable for the area not to change with time. This will be so for surfaces which are not far from thermodynamic equilibrium or which have a low surface self-diffusion coefficient, Ds. Its value for platinum, over all orientations, was found from the interference microscopic observation of

the decay of sets of parallel scratches on platinum crystal surfaces, and obeyed eq 20 between 890 and 1310°C, where

\[D_r = D_e \exp\left(-\frac{Q}{RT}\right) \] (20)

\[D_r = 4 \times 10^{-9} \text{ cm}^2 \text{ sec}^{-1} \text{ and } Q = 108 \pm 10 \text{ kJ mol}^{-1} \]. The coefficients were strongly orientation dependent. The Arrhenius equation was also verified by field-electron emission microscopy in the temperature range 823 to 1123°C, and the activation energy of 123 ± 13 kJ mol⁻¹ is in quite good agreement with the previous value. If eq 20 applies down to room temperature, \(D_r \) at 25°C is 4.7 \(\times \) 10⁻¹² cm² sec⁻¹; this corresponds to a mean diffusion distance for a single atom of 3 \(\times \) 10⁻¹¹ cm/sec or 2.6 \(\times \) 10⁻⁶ cm/day. Whether there is any net movement of material in a given direction will depend on the existence of a gradient of chemical potential on or up to the surface. Such a gradient might well be present on a freshly prepared platinum deposit, and appreciable sintering would then be expected. For the evidence we must turn to the literature.

An electrode freshly prepared from a 0.041 M (2%) chloroplatinic acid solution decreased in area by about 50% in 2-3 months, which averages out as 0.4% per day. The changes of area with time of three identically prepared platinized platinum electrodes in 5 M orthophosphoric acid at 25 and 80°C are shown in Figure 12. The decrease in area is only about 0.8% per day at 25°C but becomes ten times as large when the temperature is kept at 80°C for 7 hr a day. A Teflon-bonded platinum black electrode lost 4.4% of its area per day when stored in 85% orthophosphoric acid at 150°C.

These long-term linear decay results stand in contrast with other observations which point to rapid initial decay which levels off. A platinized platinum electrode, prepared as described in Figure 6 but with the potential of deposition not mentioned, was periodically immersed in 0.05 M KCl solution and the double-layer differential capacitance measured after 10 min and again after 18 hr. Between each such pair of measurements the electrode was stored in air in an antistatic container for many weeks. After only 1 day of ageing the differential capacitance decreased by 20% during the 18 hr of immersion, but the subsequent rate of decrease was only 13% over the next 6 months, or an average of 0.07% per day. It is not clear whether the initial drop was caused by a genuine contraction in area or by a process of equilibration (perhaps involving adsorption) at the interface. Deactivation by contamination is also a distinct possibility, although Bernard discounted this on the grounds that the solutions were very pure. Evidence for incidental contamination comes from the observation that severe poisoning of a smooth platinum electrode occurred when it was left in "pure" 1 M sulfuric acid for long periods (hours) at open circuit or held at potentials below about 0.9 V. Also, the mass specific area of precipitated platinum black found from double-layer capacitance in 0.5 M sulfuric acid decreased sharply, while the (lower) value determined by benzene adsorption changed only slightly. The period of time involved and the storage environment were not stated. Further support for the initially rapid type of decay comes from catalysis studies. On a platinized platinum rotating disk electrode (of unspecified preparation) the cathodic hydrogen diffusion current \(I \) was measured and found to vary with the rotation speed \(\omega \) according to

\[\frac{1}{I} = a + \frac{b}{\sqrt{\omega}} \] (21)

The existence of the intercept \(a \) was ascribed to the fact that the active site density \(p \) on the surface was not infinite and, from \(a \), values of \(p \) were derived. They were found to decrease from >10¹¹ cm⁻² immediately after platinization to 1.3 \(\times \) 10¹⁰ cm⁻² 6 days later and 0.6 \(\times \) 10¹⁰ cm⁻² after 12 days. In fuel cell work, electrodes deposited from 0.103 M (5%) chloroplatinic acid plus 5.3 \(\times \) 10⁻⁴ M (0.02%) lead acetate solution displayed activities to methanol oxidation which stabilized in approximately 3-6 weeks to values which were only 20-30% of the initial activities. Perhaps the essence of this type of decay lies in the interaction of the surface with gases. It was noted long ago that prolonged exposure of platinized platinum to air destroyed its activity for use as a hydrogen electrode and also reduced its wettability. The type of gas is important too; the area (as measured by the hydrogen arrest) of a platinized platinum electrode (of unspecified preparation) decreased in 2 hr by 8% when maintained at 100°C in air and by 50% at 300°C, but sintering at 300°C in hydrogen for 2 hr diminished the area by a factor of 30.

The decrease in area is more rapid if the electrodes are kept in a polarized state. Thus, the roughness factor of a platinum electrode, plated from 0.041 M (2%) chloroplatinic acid solution 1 M in HCl at 50 mV, dropped from 2380 to 97 in 100 hr when kept at 0.6 V in 0.5 M sulfuric acid plus 1 M acetic acid at 94°C. Similarly, an electrode that was being anodically polarized at 5 mA cm⁻² at 80°C, and which had been plated from 0.041 M (2%) chloroplatinic acid solution 1.5 M in sulfuric acid at 20°C, lost 69% of its initial surface in 48 hr. However, the area lost was only 28% in 48 hr if the electrode had been prepared instead at 80°C. It was suggested that more regular crystals had been formed at 80°C and that these recrystallized less on standing.

Bright-plated electrodes, obtained by using chloroplatinic acid, were initially active as hydrogen electrodes but lost their activity rather rapidly, especially when stored in hydrogen.

(100) C. N. Myers and S. F. Acree, Amer. Chem. J., 50, 396 (1913).
VI. Survey of Recommended Platinizing Procedures

Both undergraduate laboratory textbooks and certain research monographs recommend procedures for obtaining good platinized platinum electrodes. We shall now examine these in the light of the evidence presented in the previous sections.

Standard American and British undergraduate texts for practical physical chemistry list a variety of procedures. Daniels, Mathews, Williams, Bender, and Alberty103 recommend a 0.021 M (1\%) solution of platinum chloride, the use of two dry cells, and the passing of current for several minutes. Shoemaker and Garland103 instruct the student to use a 0.062 M (3\%) solution of platinum chloride plus $5.3 \times 10^{-4} M$ (0.2\%) lead acetate, with two dry cells and a rheostat to give slow gas evolution, the current to be stopped as soon as the electrodes are sooty black. Findlay and Kitchener104 advocate a solution 0.041 M (2\%) in platinum chloride and $5.3 \times 10^{-4} M$ (0.02\%) lead acetate for conductance electrodes,104 and a solution 0.021 M (1\%) in platinum chloride and no lead acetate for emf electrodes.104 Two accumulators, and a rheostat to give only a moderate stream of gas, the current being reversed every 0.5 min for approximately 10 min. A very similar preparation to the former104 is given by James.105 Of these recipes two104,106 do not mention lead acetate, one105 advocates excessive lead acetate, two104,105 support the needless41,42 procedure of current reversal, none specify the current density, and only Findlay and Kitchener give a time of platinization (but again without stating a current density). All the above books incorrectly call the main chemical platinum chloride instead of chloroplatinic acid, so perpetuating a source of confusion found in the older literature (cf. section II).

Probably the most widely used research procedure is that of Bates,106 as recommended by Hills and Ives.18 This consists of passing a current of 100-200 mA/cm2 of substrate for 1-3 min in a solution of 0.021-0.062 M (1-3\%) chloroplatinic acid plus $2.1 \times 10^{-3} M$ (0.08\%) lead acetate. Bates106 claims that with a "properly prepared" solution the conditions of plating are not critical. In the light of the evidence available, we believe that the lead acetate concentration recommended is too high, and that the range of other conditions given is too broad.

There are three main uses of platinized platinum electrodes: as hydrogen reference electrodes, as inert surfaces of high area in conductance work, and as catalysts and electrocatalysts. For routine platinization applicable to all three uses, we recommend the use of the following conditions: a solution of 0.072 M (3.5\%) chloroplatinic acid plus $1.3 \times 10^{-4} M$ (0.005\%) lead acetate, at a current density of 30 mA cm$^{-2}$ for up to 10 min. A deposition time of 5 min should be adequate for hydrogen emf107,108 and for conductance4 electrodes, for here a smaller deposit speeds equilibration and reduces adsorption. Good stirring is essential and no gas should be evolved at the platinum cathode. The chlorine evolved at the anode can easily be prevented from interacting with the cathode by employing a salt bridge or an H-type plating cell. If other considerations dictate the use of a one-compartment plating cell, the evolution of chlorine can be avoided by making the electrolyte 2 M in HCl and employing a large silver anode, previously lightly chloridized to prevent oxidation by chloroplatinate ions.12

Potentiostatic platinization, a more definitive method of preparation than galvanostatic deposition, is to be preferred whenever the properties of the electrode play an essential part in the research: in electrocatalytic investigations, for example. Suitable electrodes have been obtained49 by plating at $\pm 50 \text{ mV (NHE)}$ from a 0.041 M (2\%) chloroplatinic acid solution, 1 M in HCl. There was no simultaneous hydrogen evolution.107

For systems sensitive to trace impurities, such as the hydrogen electrode in a medium of neutral pH, platinization without lead additive has been recommended.18 In this case a low current density (10-20 mA cm$^{-2}$) is essential for good adhesion of the deposit, or else potentiostatic deposition as described above can be used. However, there are two attractive alternatives. One is to add lead acetate as before and, after platinization, to remove the surface lead which is capable of dissolving by soaking the electrode for 24 hr in aerated 1 M perchloric acid.18 The other is to apply an oscillating signal to the platinum substrate in an inert solution of similar composition to the one to be used. Suitable conditions might be the application of 1 kHz of amplitude 500 mV centered on 0.95 V for 5 min. Bright and highly active electrodes, but of short lifetime, can be prepared35 by plating from solutions of chloroplatinous acid. The appropriate pre- and post-treatment of the electrodes have been discussed in sections III.D and IV.B.3, respectively.

Acknowledgments. For permission to reproduce figures we are grateful to Academic Press (Figures 2 and 7), the Electrochemical Society (Figure 10), Macmillan (Journals) Ltd. (Figure 12), and Pergamon Press Ltd. (Figures 1 and 6), and we thank the Science Research Council for the award of a Research Studentship to A. M. F.

(107) R. Woods, private communication, 1970.