Alternatives for Cu-Be by JX Nippon Mining & Metals

 $Cu-2\%Be\ C172 \implies NKT322\ C19910\ (Cu3Ti-0.2Fe)$

Dilute Cu-0.2%Be-Ni ____ <u>NKC286 C64728 (Cu-Ni-Si)</u>

NKC388 C70252 (Cu-Ni-Si)

High Strength Hyper Titanium Copper "GIGALLOY" NKT322, C19910

Chemical composition

(wt%)

	Ti	Fe	Cu+Ti
nominal	2.9 - 3.4	0.17 - 0.23	over 99.5

"Environment-recycling is allowed."

What is Cu-Ti alloy?

Extremely fine Cu-Ti particles in Cu-Ti alloy

JX established the manufacturing processing for Cu-Ti alloy.

JX Nippon Mining & Metals Corporation

"GIGALLOY" NKT322

Higher Strength and Better Formability

NKT322-EH 90° W Bend Test

Badway)

R/t=0.5

W-type bend test for formability evaluation

Stress Relaxation Test

Stress Relaxation (%) = $y/y_0 \times 100$

Stress Remaining (%) = $(1 - y/y_0) \times 100$

Stress Relaxation Resistance of Copper Alloys

NKT322 provides only 4% of stress relaxation after 1000hours at 150 degree C.

Stress Relaxation Resistance of NKT322 at elevated temperatures

Over 20% of stress remaining should be needed for elevated temperature connectors in Automotive

Shifted to high stress relaxation resistant copper alloys

The Future of Energy, Resources and Materials

JX Nippon Mining & Metals Corporation

Cu-Ti Alloy "Eco Alloy" in Mobile Phone Connectors

Battery Terminal: NKT322

SIM Connector: NKT322

B to **B** : **NKT322**

Ground Contact: NKT322

FPC Connector: NKT322

Jack: NKT322

AFM Spring:

C1990-GSH 30um, 40um, 50um

Standard thickness for higher availability

0.08, 0.1, 0.12, 0.15, 0.2, 0.25, 0.3 (mm)

The Future of Energy, Resources and Materials

JX Nippon Mining & Metals Corporation

Advantages of NKT322 for Cu-Be Alternative 1. Quality, Property by QCDE

Higher strength and better formability than Cu-Be, and also Excellent cyclic fatigue property

2. Cost

NKT322 is competitive to Cu-Be C172, depending on thickness & volume.

3. Delivery

Local sourcing through several delivery centers in Far East Asia and also Europe & US.

4. Environment

"Green alloy" as environmental recycling friendly, Resources and Materials

JX Nippon Mining & Metals Corporation

Alternative Copper Alloys to dilute Cu-Be

High Strength Titanium Copper "GIGALLOY"

Cu-2%Be C172 - NKT322 C19910 (Cu-3Ti-0.2Fe)

Dilute Cu-0.2%Be-Ni → *NKC286 C64728 (Cu-Ni-Si)*

NKC388 C70252 (Cu-Ni-Si)

Corson Alloy Cu- (Ni, Co) - Si

- ◆ Dr. M. G. Corson invented Corson alloy in 1927.
- ◆Cu (1.5-4%) Ni, Co (0.4-1%) Si Ni, Co / Si = 2/1 (molar ratio)
- ◆Precipitation of Ni₂Si or Co₂Si compound
- ◆High strength and High conductivity
- ◆Many kinds of Corson alloys are developed

What is "Corson Alloy "?

Ni₂Si particle

In 1929, Dr. M.G.Corson developed Cu-Silicide alloy such as Cu-Ni-Si or Cu-Co-Si. Since then, the type of alloy is called "Corson alloy" after him.

High Strength — High Conductivity NKC286(C64728)

Chemical composition

wt%

	Cu	Ni	Si	Sn	Zn
Nominal	Bal.	2.8	0.6	0.5	0.4

Highest Strength Corson NKC388 (C70252)

Chemical composition

wt%

	Cu	Ni	Si	Mg	Mn
nominal	bal.	3.4~4.2	0.7~1.0	0.05~0.3	0.11~0.5

Temper

	Tensile (MPa)	0.2% yield (MPa)	Minimum Bend Ratio / thickness (Bad way)
SH	940	910	1.0
ESH	980	950	3.0

Strength and Conductivity of Corson Alloys and Dilute Cu-Be Alloys

Strength and Bend formability of Corson Alloys and Dilute Cu-Be Alloys

The Future of Energy, Resources and Materials

JX Nippon Mining & Metals Corporation

<u>Summary</u>

- ✓ Very high strength Cu-Ti alloy, NKT322 has been already commercialized for alternative to Cu-Be C172.
- ✓ High strength & high conductivity Corson alloys have been already commercialized for alternative to Cu-dilute Be alloys.