Exemption Request Form

Date of submission: 01.08.2025

1. Name and contact details

1) Name and contact details of applicant:

Company: Tel.:

BANDELIN electronic GmbH & Co. KG +49 30 768800

Name: E-Mail:

Dipl.-Ing. Stefan Bandelin Stefan.bandelin@bandelin.com

Function: Managing Partner Address:

Heinrichstr. 3 – 4 12207 Berlin Germany

2) Name and contact details of responsible person for this application (if different from above):

 Company:
 -/ Tel.:
 -/

 Name:
 -/ E-Mail:
 -/

 Function:
 -/ Address:
 -/

2. Reason for application:

As a manufacturer of high-performance ultrasonic devices for cleaning and process technology, we are applying for an extension of the exemption.

We have been using HPZT rings or discs as ultrasonic transducers in various devices for more than 65 years. We work with frequencies between 20 kHz and 55 kHz. Our company currently employs 110 people. Additional employees work for our suppliers, who manufacture various components according to our specifications that we are unable to produce ourselves. As we only manufacture high-performance ultrasonic devices and all of risk. accessories. these iobs are at serious You of various http://www.bandelin.com. can find our range devices at Our devices are used in medicine. laboratories. industry and

Our four largest competitors are also SMEs with roughly the same number of employees and similar structures. Jobs are also at risk there.

Furth	ermore, ma	any plant mar	nufacturer	s who a	re custo	mers of	high-performance	ultrasonic				
techn	ology	depend	on	its	use	in	automated	systems.				
High-performance ultrasound is a precision cleaning process and is used, for example, as a final cleaning step in industrial manufacturing after spray cleaning, which removes coarse dirt.												
In ad	dition, high	-performance	ultrasoni	c cleanir	ng is a ve	ery envir	onmentally friend	ly cleaning				
meth	method that saves up to 90% of the surfactants required for a cleaning task, thus significantly											
reduc	U	the	impa		on			vironment.				
			•	•			truments from					
clean		•	• •	vice	ients car (RDG).	Inot be	adequately clear our TRISON					
	•				` ,		e RDG, the prot					
` .		•		,			e for residual cor					
after	the I	RDG by	means	of	alternati	ng ri	nsing and	ultrasound.				
-	•	•	^3	•			nd enables energ	•				
•	-			•		•	erature control a orted, which lead					
•		•			•		nent plants, for					
	,		J	J	Ü		, ,					
	e positive e xceptions.	effects of high-	-performa	ince ultra	asound a	re jeopa	rdised if there are	no longer				
Pleas	e indicate v	where relevan	t:									
	Reques	st for new exer	mption in:									
	Reques	st for amendm	ent of exi	sting exe	emption i	n						
	□ Reques	st for extension	n of existi	ng exem	nption in							
	Reques	st for deletion	of existing	g exemp	tion in:							
	□ Provision □	on of informati	on referri	ng to an	existing	specific	exemption in:					
] Annex III		\boxtimes A	Annex IV							
	No. of exe	mption in Ann	ex III or I\	/ where	applicabl	e:	Exemption 14, A	nnex IV				
	Proposed	or existing wo	rding:				Lead in piezoele	ctric single				
	crystals for	r ultrasonic tra	nsducers	i								
	Duration w	here applicab	le:				7 years					
	Other:											

3.	Summary of the exemption request / revocation request											
	We request that the exemption continue to apply. We request that the exemption be extended for as long as possible within the framework of the applicable guidelines.											
	(A) Description of the concerned application:											
	1. To which EEE is the exemption request/information relevant?											
	Name of applications or products:											
	High-performance ultrasonic baths											
	High-power ultrasonic cleaning devices											
	High-performance ultrasonic homogenisers											
	High-power ultrasonic reactors											
	a. List of relevant categories: (mark more than one where applicable)											
	□ 1 □ 7											
	□ 2											
	□ 3 □ 9											
	<u> 4</u> 10											
	□ 5 □ 11											
	□ 6											

b.	Please specify if application is in use in other categories to which the exemption request does not refer: <u>-/-</u>
C.	Please specify for equipment of category 8 and 9: The requested exemption will be applied in monitoring and control instruments in industry in-vitro diagnostics
	other medical devices or other monitoring and control instruments than those in industry

		(Indicate mo	ore than one	e where appl	icable)			
		⊠ Pb	☐ Cd	☐Hg	☐ Cr-VI	PBB	☐ PBDE	
	3.	Function of ultrasonic tr		ice: Reli	able generati	on of ultraso	onic vibratio	ns in
	4.		substance ir pproximatel	•	ous material ('	%weight):	The	lead
	5.	which the e Germany w requested (https://www For us, this Our data co	xemption is whose quant from the v.ceramtec-semes from o	requested: iities we do e manufac group.com/e ,942 pieces ur ERP syste	EU market an unknown. We not know. The turer of n). We do in 12 months am and from walations to sup	e have seven ne delivery of the HPZT not have x 49.3 g x veighing the	ral competito puantity could range CERAM this informations 60% = 1,03 part.	ors in ld be ITEC ation.
	a.	Name of ma	aterial/comp					
					NOX P 4			
				SOI	NOX P 8			
	6.	Environmer LCA:	ntal Assessn □ Yes ⊠ No	nent:				
(B)	fo		request th	e exemptio	is the RoHS or its revoc	•		-
			erial is used	l in the form	n of a ring in	high-perform	mance ultra	sonic
	Th			-	into mechani n of high-perf		•	ing a
(C)		•	=		cs and funct material or		•	lated
	Its	excellent ef	ficiency and	high temper	ature stability			
	3 f	or lead-cont	aining mate	rials and abo	e loss factor tove 5 for lead- to the material,	free material	S.	m of

2. Which of the six substances is in use in the application/product?

temperature increase.

The limit value for temperature stability is half the Curie temperature. If this value is exceeded, the material loses its piezoelectric properties. Due to self-heating of the material during use, the application temperature is often very high, for example with boiling liquids in an ultrasonic bath.

These examples illustrate why it is currently impossible to replace lead-containing HPZT () with lead-free HPZT.

For further information, please refer to the data sheets:

Data sheet for lead-containing HPZT piezo ceramics

Werkstoff			Sonox® P4	PZT401	PZT406	Sonox® P8	PZT807
Navy Type			1	ı	П	III	Ш
Dielektrische Eiger	ıschaften						
Relative Dielektrizitätszahl ε _r	$\begin{array}{c} \epsilon_{23} \ ^{1}\!\!/\epsilon_{0} \\ \epsilon_{33} \ ^{5}\!\!/\epsilon_{0} \\ \epsilon_{11} \ ^{1}\!\!/\epsilon_{0} \\ \epsilon_{11} \ ^{5}\!\!/\epsilon_{0} \end{array}$		1300 660 1535 885	1395 735 1330 680	1325 660 1295 980	1000 540 1250 800	1105 625 1190 830
Verlustfaktor tan δ		10.3	3,0	2,0	1,8	2,0	1,6
Curietemperatur T _c		C°	325	330	325	305	300
Frequenzkonstante	N _p N _t N ₁ N ₃	KHz x mm	2210 2000 1480 1340	2190 2080 1635 1550	2190 2015 1530 1500	2280 2020 1600 1490	2320 2030 1720 1660
Kopplungsfaktor	k _p k ₃₁ k ₃₃ k _t k ₁₅		0,57 0,31 0,68 0,50 0,65	0,58 0,35 0,67 0,50 0,70	0,61 0,34 0,70 0,47 0,60	0,55 0,30 0,68 0,48 0,60	0,55 0,29 0,69 0,47 0,58
Ladungskonstante	d ₃₃ d ₃₁ d ₁₅	10 ⁻¹² C/N	310 -130 455	315 -130 510	315 -130 550	240 -95 380	260 -90 295
Spannungskonstante g ₃₃		10 ⁻³ Vm/N	26,9	25,5	26,9	27,1	26,6
Mechanische Eiger	nschaften						
Elastische Nachgiebi	gkeit S ₁₁ F S ₂₁ E	10 ⁻¹² m ² /N	14,9 18,1	12,7 15,6	13,0 15,0	11,4 13,7	10,9 15,7
Elastische Steifigkeit		10 ¹⁰ m ² /N	15,9 4,8	15,0 4,9	15,2 4,0	16,2 4,5	16,3 4,7
Dichte ρ		10³ kg/m²	7,65	7,60	7,80	7,70	7,60
Gütefaktor Q _m			500	600	750	1000	1200
Stabilität							
Alterungsrate	Kapazität Frequenz Kopplungsfaktor	%/Dekade	-4,5 1,0 -1,6	-4,6 1,0 -1,5	-6,0 0,5 -2,5	-3,0 0,8 -2,0	-3,5 0,8 -1,5

Die hier aufgeführten Werkstoffparameter wurden an Prüfkörpern ermittelt und sind als Richtwerte anzusehen. Die Werte wurden auf der Grundlage von nationalen und internationalen Normen bestimmt. Falls solche Normen nicht vorhanden waren, wurden die Parameter anhand CeramTec interner Meßvorschriften bestimmt. Die hier angegebenen Werkstoffeigenschaften stellen keine Garantie für bestimmte Produkteigenschaften von piezoelektrischen Bauelementen dar. CeramTec und ihre Tochtergesellschaften übernehmen keine Verantwortung für die Richtigkeit dieser Informationen oder für aus der Nutzung dieser Informationen resultierende Schäden. Bitte beachten Sie, dass Werkstoffspezifikationen bzw. die hier angegebenen Informationen jederzeit geändert werden können."

CeramTec

Data sheet for lead-free HPZT piezoceramics

provisional datasheet (Changes and deviations possible), status: 31.01.2023 standard tolerance range is +20%

THE CERAMICEX PE									
Werkstoff Material			SONOX®LF1	SONOX®LF100	SONOX®LF160	SONOX®LF161			
Dielektrische Eigenschaften Dielectric properties									
Relative Dielektrizitätszahl e,			Ι						
Relative permittivity ϵ_r	$\epsilon_{33}^{T}/\epsilon_{0}$		1150	489	709	504			
	s S/s		830	360	444	403			
	E ₃₃ / E ₀								
	ϵ_{11}/ϵ_0		1330	393	931	781			
	$\varepsilon_{33}^{S}/\varepsilon_{0}$ $\varepsilon_{11}^{T}/\varepsilon_{0}$ $\varepsilon_{11}^{S}/\varepsilon_{0}$		1140	381	749	737			
Verlustfaktor tan δ Dielectric dissip. factor tan δ		10-3	8	30	21	5			
Depolarisations temperatur T _d		°C		163	110	140			
Depolarisation temperature T _d		C		103	110	140			
Elektromagnetische Eigenschaften Elec	tromechanical propertie	es							
Frequenzkonstante									
Frequency constant	N _p	kHz*mm	3180	2962	3000	3089			
	N _t	kHz*mm	2640	2422	2257	2257			
	N ₁	kHz*mm	2300	2367	2269	2317			
Kopplungsfaktor	N ₃	kHz*mm	2330	2237	2093	2138			
Coupling coefficient	k _p		0,31	0,15	0,30	0.19			
Coupling Coefficient	k ₃₁		0,18	0,11	0,19	0,12			
	k ₃₃		0,43	0,39	0,50	0,48			
	k _t		0,45	0,44	0,51	0,50			
	k ₁₅		0,38	0,17	0,44	0,24			
Ladungskonstante									
Charge constant	d ₃₃	10 ⁻¹² C/N	135	83	172	129			
	d ₃₁	10 ⁻¹² C/N	-52	-20	-45	-18			
	d ₁₅	10 ⁻¹² C/N	210	43	183	91			
Spannungskonstante g ₃₃		10 ⁻³ Vm/N	14	19,2	27,4	25,8			
Voltage constant g ₃₃	1	,							
Mechanische Eigenschaften Mechanica Elastische Nachgiebigkeit	properties								
Elastic compliance	E	10 ⁻¹² m ² /N	8,2	7,7	8,4	8,2			
	s ₁₁	·							
	E 833	$10^{-12} \text{m}^2/\text{N}$	8,5	8,9	10,4	10,1			
Elastische Steifigkeit									
Elastic stiffness	C ₃₃	10 ¹⁰ N/m ²	14,6	16,3	15,2	14,7			
	C ₅₅	10 ¹⁰ N/m ²	36,5	5,7	6,0	5,0			
Dichte ρ Density ρ	ρ	10 ³ kg/m ³	5,7	5,8	5,8	5,7			
Gütefaktor Q _m (k _p) Mechan. Quality fact		20 1.0/111	310	240	140	738			
Stabilität Stability									
Alterungsrate									
Aging rate	Capacitence	%/Dekade	-0,5	-0,5	9,5	6,9			
	Frequency (k _t)	%/Dekade	0,1	0,1	2,1	-0,1			
	Coupling (k _t)	%/Dekade		-0,3	-0,9	-1,1			

5. Information on Possible preparation for reuse or recycling of waste from EEE and on provisions for appropriate treatment of waste

1) Please indicate if a closed loop system exist for EEE waste of application exists and provide information of its characteristics (method of collection to ensure closed loop, method of treatment, etc.)

Our high-performance ultrasonic devices are marked with the symbol . They must be dismantled by specialist companies and recycled or disposed of in accordance with the law, depending on the material.

2) Please indicate where relevant:
☐ Article is collected and sent without dismantling for recycling
☐ Article is collected and completely refurbished for reuse
☐ The following parts are refurbished for use as spare parts:
☐ The following parts are subsequently recycled: The manufacturer of the HPZT will take these back separately. We have no information about further processing.
☐ Article cannot be recycled and is therefore:
☐ Sent for energy return
☐ Landfilled
3) Please provide information concerning the amount (weight) of RoHS sub-
stance present in EEE waste accumulates per annum:
☐ In articles which are refurbished
☐ In articles which are recycled
☐ In articles which are sent for energy return
☐ In articles which are landfilled

6. Analysis of possible alternative substances

(A) Please provide information if possible alternative applications or alternatives for use of RoHS substances in application exist. Please elaborate analysis on a life-cycle basis, including where available information about independent research, peer-review studies development activities undertaken

Various groups around the world are continuing to actively work on the topic of lead-free HPZT piezo materials. The statement made by the manufacturer CERAMTEC in its press release on the development of lead-free ceramics on 30 November 2020: "The big challenge is to achieve the properties of conventional lead-containing ceramics" remains unchanged.

Research into lead-free piezo ceramics was carried out and funded at the Technical University of Darmstadt: AZ: AL 578/23-1.

Project period: Funding since 2019, project start: 07.2021.

No results report is available for the project to date.

A project on lead-free piezo ceramics was carried out at the Albert Ludwig University of Freiburg from 1 July 2020 to 30 June 2023. The title, "LEAP Lead-free programmable multistable piezo-thermal actuators," does not relate to high-performance ultrasound.

The article 'Environment-friendly technologies with lead-free piezoelectric materials: A review of recent developments, applications, and modelling approaches' published on 27 February 2025 describes a large number of material variants [https://arxiv.org/abs/2502.20250]. However, these are only for small signal applications, for example such as in sensors or actuators. Our difficulties with HPZT materials cannot be deduced from this.

No articles were found for the material HPZT in power applications.

These are just a few examples and do not provide an exhaustive overview. All these efforts are an indication of the urgent need for basic research. The results must then be translated into marketable products and put into use.

(B) Please provide information and data to establish reliability of possible substitutes of application and of RoHS materials in application

No valid data is available.

7. Proposed actions to develop possible substitutes

(A) Please provide information if actions have been taken to develop further possible alternatives for the application or alternatives for RoHS substances in the application.

These measures must be taken by the manufacturers of the HPZT, as we only use the finished product without developing it ourselves.

Since lead-free HPZT rings became available in the Far East, we have repeatedly obtained samples from there and carried out tests with our equipment. Unfortunately, these tests were very unfavourable in terms of the ultrasonic power required by the user. Even redesigns, where technically feasible, such as increasing the number of transducers under a high-performance ultrasonic cleaning tank, did not produce marketable results. Continued trials, including with high-performance ultrasonic homogenisers, unfortunately confirm this situation.

Recently, our supplier, CERAMTEC, has developed new lead-free HPZT materials. The data sheet for these materials is provided above, together with the data sheet for the lead-containing HPZT materials. The data already shows that the requirements in the field of high-performance ultrasound are not nearly met.

The production of lead-free ceramics is significantly more expensive. This also

suggests the generation of environmentally harmful waste materials or high energy consumption.

We are continuing our search for suitable lead-free HPZT materials, both in Germany and worldwide. We are also happy to continue supporting development through testing and the construction of test equipment as soon as further HPZT materials are available as samples.

(B) Please elaborate what stages are necessary for establishment of possible substitute and respective timeframe needed for completion of such stages.

The following parameters of lead-free HPZT piezo materials are unsuitable for use in high-performance ultrasonic technology:

Lead-free piezo materials have a significantly lower piezo coefficient. They require considerably more electrical power to generate the required ultrasonic power, i.e. a higher current consumption for the same cleaning performance. Due to the low piezo coefficient, the lead-free piezo material heats up much more during operation.

Lead-free piezo material has a lower Curie temperature. When the Curie temperature is reached, the piezo ceramic depolarises and becomes unusable as an oscillator. As described above, this is more likely to occur at high temperatures.

The electrical ultrasonic generators must be completely redesigned. This also means new circuit designs and intensive testing, even over several months. It is possible that completely different device designs will have to be developed due to the required forced ventilation, which would lead to a significant increase in costs due to the additional components and thus to higher procurement costs for users. These devices would then also have to be tested for several months.

8. Justification according to Article 5(1)(a):

(A) Links to REACH: (substance + substitute)
 Do any of the following provisions apply to the application described under (A) and (C)?
Authorisation
□ SVHC □ Candidate list □ Proposal inclusion Annex XIV □ Annex XIV
Restriction
☐ Annex XVII☐ Registry of intentions
Registration
 Provide REACH-relevant information received through the supply chain. Name of document: No documents are passed on.
(B) Elimination/substitution:
 1. Can the substance named under 4.(A)1 be eliminated? ☐ Yes. Consequences? ☒ No. Justification: The high-performance ultrasound devices
would no longer generate ultrasound.
 2. Can the substance named under 4.(A)1 be substituted? Yes. Design changes: Other materials: Other substance:
☐ Other substance.
Justification: There is no suitable substance for this yet, as explained in the application, due to technical difficulties.
 Give details on the reliability of substitutes (technical data + information):_This information is not yet available as no long-term tests have been carried out to date because the substitute material is not available in sufficient quantities for these tests.
4. Describe environmental assessment of substance from 4.(A)1 and possible substitutes with regard to
Environmental impacts: We are unable to make this ecological
statement.
Health impacts: We are unable to make this medical statement.

3) Consumer safety impacts: There is no effect, as we only target commercial users. ⇒ Do impacts of substitution outweigh benefits thereof? Please provide third-party verified assessment on this: This review cannot be provided yet. (C) Availability of substitutes: Describe supply sources for substitutes: The company CERAMTEC. Have you encountered problems with the availability? Describe: Handcrafting does not produce sufficient quantities. In addition, the technical properties vary greatly and are therefore not suitable for series production. Do you consider the price of the substitute to be a problem for the availability? ⊠ Yes ☐ No d) What conditions need to be fulfilled to ensure the availability? The technical properties must be comparable without too large a price increase for the HPZT parts. (D) Socio-economic impact of substitution: ⇒ What kind of economic effects do you consider related to substitution? ☐ Increase in direct production costs ☐ Increase in fixed costs ☐ Increase in overhead Possible social impacts within the EU Possible social impacts external to the EU Other: Increase in the purchase price for our commercial users. ⇒ Provide sufficient evidence (third-party verified) to support your statement: As the costs of series production of the HPZT parts are not available, no evidence can be provided. 9. Other relevant information

Please provide additional relevant information to further establish the necessity of your request:

None

10. Information that should be regarded as proprietary

Please	state	clearly	whether	any	of the	above	informa	tion	should	be	regarded	to	as
proprie	tary i	nformat	ion. If so,	plea	se pro	vide ve	rifiable j	ustif	ication:				

None